Use of wild-caught individuals as a key factor for success in vertebrate translocations.-Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations) are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor that could easily be implemented in practice was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild) and translocation effort (propagule size and program duration). After analyzing 83 programs, corresponding to 34 vertebrate species, by means of generalized linear mixed modelling, we found that 'origin' was more relevant for translocation success than 'effort', although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive-reared individuals for a long number of years rather than a short number of years.
The evolution of crustal magmatic systems is incompletely understood, as most studies are limited either by their temporal or spatial resolution. Exposed plutonic rocks represent the final stage of a long-term evolution punctuated by several magmatic events with different chemistry and generated under different mechanical conditions. Although the final state can be easily described, the nature of each magmatic pulse is more difficult to retrieve. This study presents a new method to investigate the compositional evolution of plutonic systems while considering thermal and mechanical processes. A thermomechanical code (MVEP2) extended by a semi-analytical dike/sill formation algorithm, is combined with a thermodynamic modelling approach (Perple_X) to investigate the feedback between petrology and mechanics. Melt is extracted to form dikes while depleting the source region. The evolving rock compositions are tracked on markers using a different phase diagram for each discrete bulk-rock composition. The rock compositional evolution is thus tracked with a high precision by means of a database with more than 58,000 phase diagrams. This database describes how density, melt fraction, chemical composition of melt and solid fractions and mineralogical assemblages change over crustal to uppermost mantle P-T conditions for a large range of rock compositions. Each bulk rock composition is composed of the 10 major oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O) including an oxygen buffer. The combined modelling approach is applied to study the chemical evolution of the crust during arc magmatism and related melt extraction and magma mixing processes. Basaltic sills are periodically injected into the crust to model heat/magma influx from the mantle. We find that accumulated sills turn into long-lived mush chambers when using a lower rock cohesion or assuming a higher intrusion depth. Associated partial melting of crustal host rocks occurs around densely distributed dikes and sills. High silica rocks (e.g. granites) are generated by partial melting of the host rocks, melt segregation within dikes, and from fractional crystallization of basalts. Although the volume of these rocks is relatively small in our models compared to rocks with a mafic to intermediate composition, they provide important information about the processes of magma differentiation within arc continental crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.