Yellow-eyed penguins (YEPs) have suffered major population declines over the past 30 years, with no single cause established. Leucocytozoon was first identified in yellow-eyed penguins in 2005. During the 2008/09 breeding season, a high mortality was seen in both mainland yellow-eyed penguins as well as those on Enderby Island of the Auckland Islands archipelago. A high overall prevalence of Leucocytozoon spp. in association with a high incidence of chick mortality was observed during this period on Enderby Island. One chick had histological evidence of leucocytozoonosis with megaloschizonts in multiple organs throughout its body. In addition, a high prevalence (73·7%) of Leucocytozoon was observed by PCR in the blood of adult Enderby yellow-eyed penguins taken during the 2006/07 season. These findings were different from the low prevalence detected by PCR on the coast of the South Island (11%) during the 2008/2009 breeding session and earlier on Campbell Island (21%) during the 2006/2007 breeding session. The Leucocytozoon spp. sequences detected lead us to conclude that the Leucocytozoon parasite is common in yellow-eyed penguins and has a higher prevalence in penguins from Enderby Island than those from Campbell Island and the mainland of New Zealand. The Enderby Island yellow-eyed penguins are infected with a Leucocytozoon spp. that is genetically distinct from that found in other yellow-eyed penguin populations. The role of Leucocytozoon in the high levels of chick mortality in the yellow-eyed penguins remains unclear.
Background Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. Results Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. Conclusions We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.
CASE HISTORY A little penguin (Eudyptula minor) of wild origin, in captivity at Wellington Zoo, became inappetent and lethargic in March 2013. Despite supportive care in the zoo's wildlife hospital, the bird died within 24 hours. CLINICAL FINDINGS Weight loss, dehydration, pale mucous membranes, weakness, increased respiratory effort and biliverdinuria were apparent on physical examination. Microscopic evaluation of blood smears revealed intra-erythrocytic stages of Plasmodium spp. and a regenerative reticulocytosis in the absence of anaemia. PATHOLOGICAL FINDINGS Post-mortem findings included reduced body condition, dehydration, pulmonary congestion and oedema, hepatomegaly, splenomegaly, hydropericardium and subcutaneous oedema. Histopathological findings included protozoal organisms in sections of lung, liver and spleen. A marked, diffuse, sub-acute interstitial histiocytic pneumonia was present. Accumulation of haemosiderin was noted in the Kupffer cells of the liver and in histiocytic-type cells in the spleen. MOLECULAR TESTING DNA was extracted from frozen portions of the liver. Nested PCR results and DNA sequencing confirmed infection of the deceased little penguin with Plasmodium (Huffia) elongatum lineage GRW06. DIAGNOSIS Avian malaria due to Plasmodium (Huffia) elongatum GRW06 RETROSPECTIVE INVESTIGATION A retrospective analysis of 294 little penguin cases in the Massey University post-mortem database revealed three other potential avian malaria cases. Analysis of archived tissues using a nested PCR for Plasmodium spp. followed by DNA sequencing revealed that a little penguin which died at Auckland Zoo was infected with P. elongatum GRW06 and two wild little penguins found dead on New Zealand beaches were infected with P. relictum SGS1 and Plasmodium. sp. lineage LINN1. Therefore, the overall frequency of deaths in little penguins associated with avian malaria was 4/295 (1.36%). CLINICAL RELEVANCE Our results suggest that avian malaria is associated with sporadic mortality in New Zealand's little penguins both in the wild and in captivity, but there is no evidence of mass mortality events due to Plasmodium spp. infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.