Analyses were conducted on four pharmaceutical compounds, representing different therapeutic classes, to evaluate the presence and potential adverse human health effects of trace levels of these substances in aqueous environmental media. Acetylsalicylic acid, clofibrate, cyclophosphamide, and indomethacin have been detected in aqueous environmental media including sewage treatment plant effluent, surface water, drinking water, and groundwater. An extensive literature search and chemical-specific risk assessments were performed to assess the potential human health significance of each compound's individual presence in environmental media. Safe water quality limits were estimated for each pharmaceutical by following the USEPA Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health and were compared to the concentrations found in the environment. The calculation of the provisional ambient water quality criteria involved estimation of human exposure to contaminated water, including intake via bioaccumulation in fish, and calculation of cancer risk and non-cancer hazard indices. Parameters detailing the toxicological and pharmacological nature, exposure assessment, and environmental fate and transport of each pharmaceutical were also considered. The overall conclusion was that based on available data, no appreciable risk to humans exists, as the detected concentrations of each of these pharmaceutical compounds found in aqueous media were far below the derived safe limits.
Analyses were conducted on four pharmaceutical compounds, representing different therapeutic classes, to evaluate the presence and potential adverse human health effects of trace levels of these substances in aqueous environmental media. Acetylsalicylic acid, clofibrate, cyclophosphamide, and indomethacin have been detected in aqueous environmental media including sewage treatment plant effluent, surface water, drinking water, and groundwater. An extensive literature search and chemical-specific risk assessments were performed to assess the potential human health significance of each compound's individual presence in environmental media. Safe water quality limits were estimated for each pharmaceutical by following the USEPA Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health and were compared to the concentrations found in the environment. The calculation of the provisional ambient water quality criteria involved estimation of human exposure to contaminated water, including intake via bioaccumulation in fish, and calculation of cancer risk and non-cancer hazard indices. Parameters detailing the toxicological and pharmacological nature, exposure assessment, and environmental fate and transport of each pharmaceutical were also considered. The overall conclusion was that based on available data, no appreciable risk to humans exists, as the detected concentrations of each of these pharmaceutical compounds found in aqueous media were far below the derived safe limits.
The use of animal vs. human data for the purposes of establishing human risk was examined for four pharmaceutical compounds: acetylsalicylic acid, cyclophosphamide, indomethacin and clofibric acid. Literature searches were conducted to identify preclinical and clinical data useful for the derivation of acceptable daily intakes (ADIs) from which a number of risk values including occupational exposure limits (OELs) could be calculated. OELs were calculated using human data and then again using animal data exclusively. For two compounds, ASA and clofibric acid use of animal data alone led to higher OELs (not health protective), while for indomethacin and cyclophosphamide use of animal data resulted in the same or lower OELs based on human data alone. In each case arguments were made for why the use of human data was preferred. The results of the analysis support a basic principle of risk assessment that all available data be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.