Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
These results demonstrate that IL-33 exacerbates allergic bronchoconstriction by increasing synthesis, storage, and secretion of serotonin from the mast cell. This mechanism has implications for the development of airway obstruction in asthma.
Interleukin 33 (IL-33) represents a potential link between the airway epithelium and induction of Th2-type inflammatory responses associated with the development of asthma. This study investigated the potential of IL-33 to exacerbate antigen driven asthma responses. An ovalbumin (OVA) asthma model was used in which sensitized C57BL/6 mice were exposed to IL-33 before each OVA challenge. IL-33 given to sensitized mice acted synergistically with antigen and aggravated airway inflammation, hyperresponsiveness and remodeling compared with mice that were only OVA sensitized and challenged and mice that were only exposed to IL-33. Elevated levels of local and systemic mast cell protease mMCP-1, as well as antigen-specific IgE production, were observed following IL-33 administration to sensitized mice. Similarly, exposing OVA-sensitized mice to IL-33 increased the Th2 cytokine levels, including IL-4, IL-5 and IL-13. Furthermore, IL-33 and OVA administration to OVA-sensitized mice increased ILC2s in the lung, suggesting a role for ILC2s in IL-33-mediated exacerbation of OVA-induced airway responses. Collectively, these findings show that IL-33 aggravates important features of antigen-driven asthma, which may have implications for asthma exacerbations.
Allergic asthma is a chronic inflammatory disease, characterized by airway hyperresponsiveness (AHR), inflammation, and tissue remodeling, in which mast cells play a central role. In the present study, we analyzed how mast cell numbers and localization influence the AHR in a chronic murine model of asthma. C57BL/6 (wild-type) and mast cell-deficient B6.Cg-Kit(W-sh) mice without (Wsh) and with (Wsh+MC) mast cell engraftment were sensitized to and subsequently challenged with ovalbumin for a 91-day period. In wild-type mice, pulmonary mast cells were localized in the submucosa of the central airways, whereas the more abundant mast cells in Wsh+MC mice were found mainly in the alveolar parenchyma. In Wsh+MC, ovalbumin challenge induced a relocation of mast cells from the perivascular space and central airways to the parenchyma. Allergen challenge caused a similar AHR in wild-type and Wsh mice in the resistance of the airways and the pulmonary tissue. In Wsh+MC mice the AHR was more pronounced. The elevated functional responses were partly related to the numbers and localization of connective tissue-type mast cells in the peripheral pulmonary compartments. A mast cell-dependent increase in IgE and IL-33 together with impairment of the IL-23/IL-17 axis was evoked in Wsh and Wsh+MC mice by allergen challenge. This study shows that within the same chronic murine asthma model the development of AHR can be both dependent and independent of mast cells. Moreover, the spatial distribution and number of pulmonary mast cells determine severity and localization of the AHR.
One feature of allergic asthma, the EAR (early allergic reaction), is not present in the commonly used mouse models. We therefore investigated the mediators involved in EAR in a guinea-pig in vivo model of allergic airway inflammation. Animals were sensitized using a single OVA (ovalbumin)/alum injection and challenged with aerosolized OVA on day 14. On day 15, airway resistance was assessed after challenge with OVA or MCh (methacholine) using the forced oscillation technique, and lung tissue was prepared for histology. The contribution of mast cell mediators was investigated using inhibitors of the main mast cell mediators [histamine (pyrilamine) and CysLTs (cysteinyl-leukotrienes) (montelukast) and prostanoids (indomethacin)]. OVA-sensitized and challenged animals demonstrated AHR (airway hyper-responsiveness) to MCh, and lung tissue eosinophilic inflammation. Antigen challenge induced a strong EAR in the sensitized animals. Treatment with a single compound, or indomethacin together with pyrilamine or montelukast, did not reduce the antigen-induced airway resistance. In contrast, dual treatment with pyrilamine together with montelukast, or triple inhibitor treatment, attenuated approximately 70% of the EAR. We conclude that, as in humans, the guinea-pig allergic inflammation model exhibits both EAR and AHR, supporting its suitability for in vivo identification of mast cell mediators that contribute to the development of asthma. Moreover, the known mast cell mediators histamine and leukotrienes were major contributors of the EAR. The data also lend further support to the concept that combination therapy with selective inhibitors of key mediators could improve asthma management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.