SummaryN6-methyladenosine (m6A) and N6,2′-O-dimethyladenosine (m6Am) are abundant mRNA modifications that regulate transcript processing and translation. The role of both, here termed m6A/m, in the stress response in the adult brain in vivo is currently unknown. Here, we provide a detailed analysis of the stress epitranscriptome using m6A/m-seq, global and gene-specific m6A/m measurements. We show that stress exposure and glucocorticoids region and time specifically alter m6A/m and its regulatory network. We demonstrate that deletion of the methyltransferase Mettl3 or the demethylase Fto in adult neurons alters the m6A/m epitranscriptome, increases fear memory, and changes the transcriptome response to fear and synaptic plasticity. Moreover, we report that regulation of m6A/m is impaired in major depressive disorder patients following glucocorticoid stimulation. Our findings indicate that brain m6A/m represents a novel layer of complexity in gene expression regulation after stress and that dysregulation of the m6A/m response may contribute to the pathophysiology of stress-related psychiatric disorders.
Bacterial alginate initially consists of 1–4-linked β-D-mannuronic acid residues (M) which can be later epimerized to α- L -guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum . The three A. chroococcum genes, here designated AcalgE1 , AcalgE2 and AcalgE3 , were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions − 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.
Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 serum samples. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.
12The precise expression of genes is one of the foundations of biotechnology. Here we present 13
Laboratory mice are the most frequently used animals in biomedical research. In accordance with guidelines for humane handling, several blood sampling techniques have been established. While the effects of these procedures on blood quality and histological alterations at the sampling site are well studied, their impact on the animals' welfare has not been extensively investigated. Therefore, our study aimed to compare three commonly used blood sampling techniques regarding their effects on different indicators of animal welfare, including physiological and behavioural response stress parameters, including pain measures, home-cage behaviour and nest-building as well as exploratory activity and neophobia. Male C57BL/6J mice were subjected to a single blood collection from either the vena facialis, the retrobulbar sinus or the tail vessel, or were allocated to the respective control treatment. While all blood sampling techniques led to an acute increase in plasma corticosterone levels, the response was strongest in animals that underwent sampling from the vena facialis and the retrobulbar sinus. Similar results were observed when the time-course of adrenocortical activity was monitored via corticosterone metabolites from faecal samples. Blood collection from the vena facialis and the retrobulbar sinus also decreased exploration of novel stimuli, resulted in decreased nest-building activity and induced higher scores in the Mouse Grimace Scale. Moreover, locomotor activity and anxiety-related behaviour were strongly affected after facial vein bleeding. Interestingly, tail vessel bleeding only induced little alterations in the assessed physiological and behavioural parameters. Importantly, the observed effects in all treatment groups were no longer detectable after 24 hours, indicating only short-term impacts. Thus, by also taking the animal's perspective and comprehensively assessing the severity of the particular sampling procedures, the results of our study contribute to Refinement within the 3R concept and allow researchers to objectively select the most appropriate and welfare-friendly blood sampling technique for a given experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.