BackgroundProduction of recombinant proteins in bacteria for academic and commercial purposes is a well established field; however the outcomes of process developments for specific proteins are still often unpredictable. One reason is the limited understanding of the performance of expression cassettes relative to each other due to different genetic contexts. Here we report the results of a systematic study aiming at exclusively comparing commonly used regulator/promoter systems by standardizing the designs of the replicon backbones.ResultsThe vectors used in this study are based on either the RK2- or the pMB1- origin of replication and contain the regulator/promoter regions of XylS/Pm (wild-type), XylS/Pm ML1-17 (a Pm variant), LacI/PT7lac, LacI/Ptrc and AraC/PBAD to control expression of different proteins with various origins. Generally and not unexpected high expression levels correlate with high replicon copy number and the LacI/PT7lac system generates more transcript than all the four other cassettes. However, this transcriptional feature does not always lead to a correspondingly more efficient protein production, particularly if protein functionality is considered. In most cases the XylS/Pm ML1-17 and LacI/PT7lac systems gave rise to the highest amounts of functional protein production, and the XylS/Pm ML1-17 is the most flexible in the sense that it does not require any specific features of the host. The AraC/PBAD system is very good with respect to tightness, and a commonly used bioinformatics prediction tool (RBS calculator) suggested that it has the most translation-efficient UTR. Expression was also studied by flow cytometry in individual cells, and the results indicate that cell to cell heterogeneity is very relevant for understanding protein production at the population level.ConclusionsThe choice of expression system needs to be evaluated for each specific case, but we believe that the standardized vectors developed for this study can be used to more easily identify the nature of case-specific bottlenecks. By then taking into account the relevant characteristics of each expression cassette it will be easier to make the best choice with respect to the goal of achieving high levels of protein expression in functional or non-functional form.
Bacterial conjugation is a process that is mediated either by a direct cell-to-cell junction or by formation of a bridge between the cells. It is often used to transfer DNA constructs designed in Escherichia coli to recipient bacteria, yeast, plants and mammalian cells. Plasmids bearing the RK2/RP4 origin of transfer (oriT) are mostly mobilized using the E. coli S17-1/SM10 donor strains, in which transfer helper functions are provided from a chromosomally integrated RP4::Mu. We have observed that large plasmids were occasionally modified after conjugal transfer when using E. coli S17-1 as a donor. All modified plasmids had increased in size, which most probably was a result of co-transfer of DNA from the chromosomally located oriT. It has earlier also been demonstrated that the bacteriophage Mu is silently transferred to recipient cells by these donor strains, and both occurrences are very likely to lead to mutations within the recipient DNA. Here we report the construction of a new biological system addressing both the above mentioned problems in which the transfer helper functions are provided by a plasmid lacking a functional oriT. This system is compatible with all other replicons commonly used in conjugation experiments and further enables the use of diverse bacterial strains as donors. Plasmids containing large inserts were successfully conjugated and the plasmid modifications observed when E. coli S17-1 was used as donor were eliminated by the use of the new host-independent vector system.
SummarySecondary structures and the short Shine–Dalgarno sequence in the 5′‐untranslated region of bacterial mRNAs (UTR) are known to affect gene expression at the level of translation. Here we report the use of random combinatorial DNA sequence libraries to study UTR function, applying the strong, σ32/σ38‐dependent, and positively regulated Pm promoter as a model. All mutations in the libraries are located at least 8 bp downstream of the transcriptional start site. The libraries were screened using the ampicillin‐resistance gene (bla) as reporter, allowing easy identification of UTR mutants that display high levels of expression (up to 20‐fold increase relative to the wild‐type at the protein level). Studies of the two UTR mutants identified by a modified screening procedure showed that their expression is stimulated to a similar extent at both the transcript and protein product levels. For one such mutant a model analysis of the transcription kinetics showed significant evidence of a difference in the transcription rate (about 18‐fold higher than the wild type), while there was no evidence of a difference in transcript stability. The two UTR sequences also stimulated expression from a constitutive σ70‐dependent promoter (P1/Panti‐tet), demonstrating that the UTR at the DNA or RNA level has a hitherto unrecognized role in transcription.
SummaryRegulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
SummaryThe inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error‐prone PCR on xylS was used to construct a library consisting of about 430 000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β‐lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N‐terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10‐fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N‐terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β‐barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host‐toxic antibody fragment scFv‐phOx expressed from Pm with the evolved XylS mutant protein StEP‐13 was about ninefold higher than with wild‐type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high‐level recombinant protein production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.