Objective To optimize the current diagnostic and treatment procedures for patients with bilateral vestibulopathy (BV), this study aimed to determine the complete spectrum of symptoms associated with BV. Method A prospective mixed-method study design was used. Qualitative data were collected by performing semi-structured interviews about symptoms, context, and behavior. The interviews were recorded and transcribed until no new information was obtained. Transcriptions were analyzed in consensus by two independent researchers. In comparison to the qualitative results, quantitative data were collected using the Dizziness Handicap Inventory (DHI), Hospital Anxiety and Depression Scale (HADS) and a health-related quality of life questionnaire (EQ-5D-5L). Results Eighteen interviews were transcribed. Reported symptoms were divided into fourteen physical symptoms, four cognitive symptoms, and six emotions. Symptoms increased in many situations, such as darkness (100%), uneven ground (61%), cycling (94%) or driving a car (56%). These symptoms associated with BV often resulted in behavioral changes: activities were performed more slowly, with greater attention, or were avoided. The DHI showed a mean score of severe handicap (54.67). The HADS questionnaire showed on average normal results (anxiety = 7.67, depression = 6.22). The EQ-5D-5L demonstrated a mean index value of 0.680, which is lower compared to the Dutch age-adjusted reference 0.839 (60–70 years). Conclusion BV frequently leads to physical, cognitive, and emotional complaints, which often results in a diminished quality of life. Importantly, this wide range of symptoms is currently underrated in literature and should be taken into consideration during the development of candidacy criteria and/or outcome measures for therapeutic interventions such as the vestibular implant.
Objective Current diagnostic criteria for bilateral vestibulopathy (BV) primarily involve measurements of vestibular reflexes. Perceptual self-motion thresholds however, are not routinely measured and their clinical value in this specific population is not yet fully determined. Objectives of this study were (1) to compare perceptual self-motion thresholds between BV patients and control subjects, and (2) to explore patterns of self-motion perception performance and vestibular function in BV patients. Methods Thirty-seven BV patients and 34 control subjects were included in this study. Perceptual self-motion thresholds were measured in both groups using a CAREN platform (Motek Medical BV, Amsterdam, The Netherlands). Vestibular function was evaluated (only in BV patients) by the caloric test, torsion swing test, video head impulse test of all semicircular canals, and cervical- and ocular vestibular-evoked myogenic potentials. Differences in thresholds between both groups were analyzed. Hierarchical cluster analysis was performed to visualize patterns between self-motion perception and vestibular function within the group of BV patients. Results Perceptual self-motion thresholds were significantly higher in BV patients compared to control subjects, regarding nearly all rotations and translations (depending on the age group) (p ≤ 0.001). Cluster analysis showed that within the group of BV patients, higher perceptual self-motion thresholds were generally associated with lower vestibular test results (significant for yaw rotation, caloric test, torsion swing test, and video head impulse test (p ≤ 0.001)). Conclusion Self-motion perception is significantly decreased in BV patients compared to control subjects regarding nearly all rotations and translations. Furthermore, decreased self-motion perception is generally associated with lower residual vestibular function in BV patients. Trial registration Trial registration number NL52768.068.15/METC
Objective: To assess the prevalence of each symptom listed in the acronym DISCOHAT (worsening of symptoms in Darkness and/or uneven ground, Imbalance, Supermarket effect, Cognitive complaints, Oscillopsia, Head movements worsen symptoms, Autonomic complaints, and Tiredness) in patients with bilateral vestibulopathy (BVP), compared to patients with unilateral vestibulopathy (UVP).Methods: A descriptive case-control study was performed on BVP and UVP patients who were evaluated for their vestibular symptoms by two of the authors (RvdB, MCG) at a tertiary referral center, between 2017 and 2020. During history taking, the presence of each DISCOHAT symptom was checked and included in the electronic health record. Presence of a symptom was categorized into: “present,” “not present,” and “missing.”Results: Sixty-six BVP patients and 144 UVP patients were included in this study. Prevalence of single DISCOHAT symptoms varied from 52 to 92% in BVP patients and 18–75% in UVP patients. Patients with BVP reported “worsening of symptoms in darkness,” “imbalance,” “oscillopsia,” and “worsening of symptoms with fast head movements” significantly more than UVP patients (p ≤ 0.004).Conclusion: The DISCOHAT acronym is able to capture a wide spectrum of symptoms related to vestibulopathy, while it is easy and quickly to use in clinic. Application of this acronym might facilitate a more thorough and uniform assessment of bilateral vestibulopathy, within and between vestibular clinics worldwide.
ObjectiveThis study aimed to investigate (1) the patterns of vestibular impairment in bilateral vestibulopathy (BVP) and subsequently, the implications regarding patient eligibility for vestibular implantation, and (2) whether this pattern and severity of vestibular impairment is etiology dependent.MethodsA total of one hundred and seventy-three subjects from three tertiary referral centers in Europe were diagnosed with BVP according to the Bárány Society diagnostic criteria. The subjects underwent vestibular testing such as the caloric test, torsion swing test, video Head Impulse Test (vHIT) in horizontal and vertical planes, and cervical and/or ocular vestibular evoked myogenic potentials (c- and oVEMPs). The etiologies were split into idiopathic, genetic, ototoxicity, infectious, Menière's Disease, (head)trauma, auto-immune, neurodegenerative, congenital, and mixed etiology.ResultsThe caloric test and horizontal vHIT more often indicated horizontal semicircular canal impairment than the torsion swing test. The vHIT results showed significantly higher gains for both anterior canals compared with the horizontal and posterior canals (p < 0.001). The rates of bilaterally absent oVEMP responses were higher compared to the bilaterally absent cVEMP responses (p = 0.010). A total of fifty-four percent of the patients diagnosed with BVP without missing data met all three Bárány Society diagnostic test criteria, whereas 76% of the patients were eligible for implantation according to the vestibular implantation criteria. Regarding etiology, only horizontal vHIT results were significantly lower for trauma, neurodegenerative, and genetic disorders, whereas the horizontal vHIT results were significantly higher for Menière's Disease, infectious and idiopathic BVP. The exploration with hierarchical cluster analysis showed no significant association between etiology and patterns of vestibular impairment.ConclusionThis study showed that caloric testing and vHIT seem to be more sensitive for measuring vestibular impairment, whereas the torsion swing test is more suited for measuring residual vestibular function. In addition, no striking patterns of vestibular impairment in relation to etiology were found. Nevertheless, it was demonstrated that although the implantation criteria are stricter compared with the Bárány Society diagnostic criteria, still, 76% of patients with BVP were eligible for implantation based on the vestibular test criteria. It is advised to carefully examine every patient for their overall pattern of vestibular impairment in order to make well-informed and personalized therapeutic decisions.
Objective: This study aimed to identify differences in vestibulo-ocular reflex gain (VOR gain) and saccadic response in the suppression head impulse paradigm (SHIMP) between predictable and less predictable head movements, in a group of healthy subjects. It was hypothesized that higher prediction could lead to a lower VOR gain, a shorter saccadic latency, and higher grouping of saccades.Methods: Sixty-two healthy subjects were tested using the video head impulse test and SHIMPs in four conditions: active and passive head movements for both inward and outward directions. VOR gain, latency of the first saccade, and the level of saccade grouping (PR-score) were compared among conditions. Inward and active head movements were considered to be more predictable than outward and passive head movements.Results: After validation, results of 57 tested subjects were analyzed. Mean VOR gain was significantly lower for inward passive compared with outward passive head impulses (p < 0.001), and it was higher for active compared with passive head impulses (both inward and outward) (p ≤ 0.024). Mean latency of the first saccade was significantly shorter for inward active compared with inward passive (p ≤ 0.001) and for inward passive compared with outward passive head impulses (p = 0.012). Mean PR-score was only significantly higher in active outward than in active inward head impulses (p = 0.004).Conclusion: For SHIMP, a higher predictability in head movements lowered gain only in passive impulses and shortened latencies of compensatory saccades overall. For active impulses, gain calculation was affected by short-latency compensatory saccades, hindering reliable comparison with gains of passive impulses. Predictability did not substantially influence grouping of compensatory saccades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.