A 1-D chain CP with both SCO and redox activity has been successfully prepared by the combination of a bis-pyridyl functionalised TTF core and a Schiff base-like N2O2 ligand.
Targeted recognition of medium sized molecules with mixed hydrogen bond units is essential for using porous materials for molecular separation, sensing and drug delivery.
Introduction:The synthesis of four new iron(II) coordination polymers [Fe(L1a)(bpua)] (1), [Fe(L1b)(bpua)](0.5bpua) (2), [Fe(L2a)(bpua)] (3), [Fe(L1b)(bpua)](yEtOH) (5) and one trinuclear complex [{Fe(L1a)(bpua)(MeOH)}2-µ{Fe(L1a)}](xMeOH) (4) with Schiff base-like N2O2coordinating equatorial ligands (L1a, L1b and L2a) and 4,4’-bis(pyridyl)urea (bpua) as bridging axial ligand is described.Materials and Methods:Single crystal X-ray structure elucidation of the trinuclear module4and of the coordination polymer5reveals the presence of HS-LS-HS chains and all-HS infinite 1-D strands, respectively. As anticipated the presence of the bridging urea supports the supramolecular concatenation within an extended hydrogen-bonding network. Magnetic measurements reveal spin crossover behavior for four of the five complexes (1–4) that is strongly solvent dependent.Results and Conclusion:Interestingly, in two cases, complete removal of the solvent from the crystal packing leads to wider thermal hysteresis loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.