Despite the compelling contribution of the study of event related potentials (ERPs) and eye movements to cognitive neuroscience, these two approaches have largely evolved independently. We designed an eye-movement visual search paradigm that allowed us to concurrently record EEG and eye movements while subjects were asked to find a hidden target face in a crowded scene with distractor faces. Fixation event-related potentials (fERPs) to target and distractor stimuli showed the emergence of robust sensory components associated with the perception of stimuli and cognitive components associated with the detection of target faces. We compared those components with the ones obtained in a control task at fixation: qualitative similarities as well as differences in terms of scalp topography and latency emerged between the two. By using single trial analyses, fixations to target and distractors could be decoded from the EEG signals above chance level in 11 out of 12 subjects. Our results show that EEG signatures related to cognitive behavior develop across spatially unconstrained exploration of natural scenes and provide a first step towards understanding the mechanisms of target detection during natural search.
The relationship between attention and awareness and the processing of visual information outside of attention and awareness remain controversial issues. We employed the motion aftereffect (MAE) illusion and continuous flash suppression (CFS) to study the behavioral effects of unseen and unattended visual motion. The main finding was that either withdrawal of attention or the lack of visual awareness on the adaptors did not eliminate the formation of translational MAEs, spiral MAEs, or the interocular transfer of the MAE. However, no spiral MAE was generated when attention was diverted from the unseen spiral adaptors. Interestingly, all MAEs that arose in the absence of awareness or in the absence of attention were reduced in size. The pattern of results is consistent with suggestions that the magnitude of visual motion adaptation depends on both attention and awareness.
Humans make several eye movements every second, and thus a fundamental challenge in conscious vision is to maintain continuity by matching object representations in constantly shifting retinal coordinates. One possible mechanism for visual stability is the remapping of receptive fields around saccade onset, combining pre- and postsaccadic information. The mislocalization of stimuli briefly flashed near the time of saccades has been taken as evidence for remapping. Yet the relationship between remapping, mislocalization, and trans-saccadic integration remains unclear. We asked participants to identify a target stimulus presented around the time of saccade onset, which was immediately visually masked by a postsaccadic stimulus presented in the same spatial location (backward masking). Presenting two rapidly occurring events across separate fixations allowed us to investigate how the visual system reconstructs what happens during a saccade. We show that saccadic remapping resulted in perception of target and mask as either spatially segregated or integrated, depending on the exact timing of saccade onset. During segregation, the target was unmasked because it was perceived as displaced from the mask; during integration, the postsaccadic stimulus masked the presaccadic target (spatiotopic masking). Thus, segregation and integration may work together to yield continuity in conscious vision.
When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.