A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
BackgroundRheumatoid factors (RFs) and antibodies against cyclic citrullinated peptides (CCPs) of IgG, IgA and IgM isotype have been shown to precede disease onset by years.ObjectiveTo evaluate serological risk markers in first-degree relatives from multicase families in relation to genetic and environmental risk factors.Methods51 multicase families consisting of 163 individuals with rheumatoid arthritis (RA) (mean±SD age, 60±14 years; disease duration 21 years; 71.8% female) and with 157 first-degree relatives unaffected by RA (54±17 years; 59.9% female) were recruited. Isotypes of antibodies against CCPs (IgG, IgA and IgM) and RFs (IgM and IgA) were determined using automated enzyme immunoassays. Cut-off levels were established using receiver operating characteristic curves based on values for 100 unrelated healthy controls.ResultsThe concentrations and frequencies of all anti-CCP and RF isotypes were significantly increased in first-degree relatives and patients with RA compared with unrelated healthy controls. The relative distribution of IgA and IgM isotypes was higher than IgG in the relatives, whereas the IgG isotype dominated in patients with RA. The patients carried human leucocyte antigen-shared epitope (HLA-SE) significantly more often than the relatives (71.4% vs 53.9%, p=0.01), while the frequency of the PTPN22 T variant was similar. HLA-SE, combined with smoking, was significantly related to all combinations of anti-CCP and RF isotypes in patients with RA. No such relationships were found for the first-degree relatives.ConclusionsAll anti-CCP and RF isotypes analysed occurred more commonly in unaffected first-degree relatives from multicase families than in controls, but with different isotype distribution from patients with RA.
Objective A highly polygenic etiology and high degree of allele-sharing between ancestries have been well-elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. Methods We analyzed Korean rheumatoid arthritis case-control samples using the Immunochip and GWAS array to search for new risk alleles of rheumatoid arthritis with anti-citrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data, for a total sample size of 9,299 Korean and 45,790 European case-control samples. Results We identified 8 new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1–FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10−8), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the 7 new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of SNPs that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. Conclusion This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.
BackgroundGenetic factors have a substantial role in determining development of rheumatoid arthritis (RA), and are likely to account for 50–60% of disease susceptibility. Genome-wide association studies have identified non-human leucocyte antigen RA susceptibility loci which associate with RA with low-to-moderate risk.ObjectivesTo investigate recently identified RA susceptibility markers using cohorts from six European countries, and perform a meta-analysis including previously published results.Methods3311 DNA samples were collected from patients from six countries (UK, Germany, France, Greece, Sweden and Denmark). Genotype data or DNA samples for 3709 controls were collected from four countries (not Sweden or Denmark). Eighteen single nucleotide polymorphisms (SNPs) were genotyped using Sequenom MassArray technology. Samples with a >95% success rate and only those SNPs with a genotype success rate of >95% were included in the analysis. Scandinavian patient data were pooled and previously published Swedish control data were accessed as a comparison group. Meta-analysis was used to combine results from this study with all previously published data.ResultsAfter quality control, 3209 patients and 3692 controls were included in the study. Eight markers (ie, rs1160542 (AFF3), rs1678542 (KIF5A), rs2476601 (PTPN22), rs3087243 (CTLA4), rs4810485 (CD40), rs5029937 (6q23), rs10760130 (TRAF1/C5) and rs7574865 (STAT4)) were significantly associated with RA by meta-analysis. All 18 markers were associated with RA when previously published studies were incorporated in the analysis. Data from this study increased the significance for association with RA and nine markers.ConclusionsIn a large European RA cohort further evidence for the association of 18 markers with RA development has been obtained.
Objective. To analyze the association of the PD-1.3 polymorphism within the PDCD1 gene in patients with systemic lupus erythematosus (SLE) from the homogeneous population in northern Sweden. The PD-1.3A allele was analyzed in relation to disease manifestations and severity representing various phenotypes of SLE.Methods Conclusion. The PD-1.3A allele is associated with renal manifestations in SLE patients from northern Sweden but not with susceptibility to SLE per se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.