Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria. Dickeya dadantii, formerly Erwinia chrysanthemi (11), is the causative agent of soft rot disease in a wide range of plant species, including many economically important crops (10). Soft rot results from the maceration of plant tissues following degradation of pectin, the major component of primary cell walls (7). D. dadantii is a devastating opportunistic pathogen in storage organs and fleshy tissues, particularly when compromised by bruising, excess water, low oxygen levels, or high temperatures. D. dadantii is also associated with systemic infections, vascular disorders, foliar necroses, and latent infections in growing plants. We sequenced and annotated the complete genome of Dickeya dadantii strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria. Two whole-genome shotgun libraries were prepared with plasmid pHOS2 with target insert sizes of 2 to 3 kb and 10 to 12 kb. We collected approximately 67,000 dual-end sequences, 67% from small-insert clones and 33% from the larger insert library. Sequences were assembled into contigs using the Celera assembler (9), and this assembly was transferred to SeqMan II (Lasergene) for finishing. Primer walking was employed to close gaps covered by clones available from the shotgun libraries. The remaining gaps were closed by sequencing PCR products generated using primers designed from the ends of assembled and ordered contigs. PCR products spanning each rRNA operon were sequenced separately to resolve sequence differences between copies. We used Glimmer 2.0 (3) for initial prediction of protein coding regions. We added, deleted, and revised endpoints of genes based on comparisons to other genomes, genes, and proteins in the NCBI databases. tRNA sequences were identified using tRNAscan-SE (8) with additional examination to identify specific tRNAs not distinguishable by their anticodons alone. rRNA genes were identified by comparison to other enterobacterial sequences using
In planta expression of a high-affinity iron-uptake system involving the siderophore chrysobactin in Erwinia chrysanthemi 3937 contributes greatly to invasive growth of this pathogen on its natural host, African violets. A previous study reported that global regulation by iron in this strain was mediated at the transcriptional level via the cbr locus which, when inactivated by insertional mutation, prevents the chrysobactin system from being tightly repressed by FeCl3. Herein, we report the nucleotide sequence of this locus and the functional analysis of its encoded products. Sequence analysis of a 4.8 kb genomic segment of a plasmid encompassing the cbr locus and characterization of the cognate translated products made it possible to uncover a system exhibiting similarity with prokaryotic transporters implicated in the transport of iron complexes. Accordingly, the CbrA product was shown to be the periplasmic component of a permease complex also including two integral membrane proteins, CbrB and CbrC, and the ATP-binding unit CbrD. This system allowed internalization of Fe(III) when supplied to bacterial cells as 59FeCl3 or 59Fe dicitrate, via complexation to a second siderophore recently detected in strain 3937. Most notably, we demonstrate that this second siderophore-mediated iron-acquisition system is operational in bacterial cells grown in the presence of FeCl3. The regulatory effect of cbr was further assessed on a lacZ chrysobactin operon fusion indicating that the transcriptional control exerted by cbr on expression of the chrysobactin system is of homeostatic nature. in conclusion, E. chrysanthemi provides an interesting model in which iron acquisition involves an inductive process resulting in differential expression of two siderophore-mediated pathways in relation to external iron accessibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.