In the present contribution, two nationwide surveys of personal protective equipment (PPE) pollution were conducted in Peru and Argentina aiming to provide valuable information regarding the abundance and distribution of PPE in coastal sites. Additionally, PPE items were recovered from the environment and analyzed by Fourier transformed infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), and X-ray diffraction (XRD), and compared to brand-new PPE in order to investigate the chemical and structural degradation of PPE in the environment. PPE density (PPE m −2 ) found in both countries were comparable to previous studies. FTIR analysis revealed multiple polymer types comprising common PPE, mainly polypropylene, polyamide, polyethylene terephthalate, and polyester. SEM micrographs showed clear weathering signs, such as cracks, cavities, and rough surfaces in face masks and gloves. EDX elemental mapping revealed the presence of elemental additives, such as Ca in gloves and face masks and AgNPs as an antimicrobial agent. Other metals found on the surface of PPE were Mo, P, Ti, and Zn. XRD patterns displayed a notorious decrease in the crystallinity of polypropylene face masks, which could alter its interaction with external contaminants and stability. The next steps in this line of research were discussed.
Microplastics (< 5 mm) are ubiquitous contaminants in the marine environment. Many marine commercial species, among fish, mollusks and crustaceans, are subject to microplastic exposure through ingestion. The aims of the present study were to determine microplastic contamination in scallops from fishery markets of Lima and if microplastics are more likely to adhere to certain parts of the scallop. Argopecten purpuratus specimens were bought from fishery markets in Lima. Soft tissues were digested using 10% KOH and incubated at 60 °C overnight. An optical microscope was used to observe microplastics after vacuum filtration of the supernatant solution. Microplastic concentration, color and type were recorded. ATR-FTIR analysis determined the specific polymer types. The overall mean microplastic concentration was 2.25 ± 0.54 MP.ind-1. Fibers were the most abundant microplastic type, while red and blue were dominant colors. Mann Whitney U test indicated no significant differences (P > 0.05) of microplastic content between gonads and muscle. Microplastics in seafood and foodstuff could pose a threat to food security and human health. Still, information regarding microplastic pollution is scarce.
Seafood contamination with microplastics is one major route for human intake. Shellfish are among the most important since most shellfish species are eaten fresh and entirely. The aim of the present study was to report the abundance and characteristics of microplastics in commercial bivalve Aulacomya atra sold in fisheries from three Peruvian provinces. Market surveys were carried out and standard microplastic extraction, observation, and analysis methods were conducted. The mean microplastic abundance in the three provinces was 0.56 ± 0.08 MP g-1. Lima, the most populated province in Peru, presented the highest concentration (1.04 ± 0.17 MP g-1). The majority of the microplastics were fiber/lines (58.8 %) and blue (40.5 %). The polymer identity of most fiber/lines was polyester, suggesting microfibers that shed from clothes during laundry may be one major source of contamination. Other identified polymers were polyethylene (PE), polypropylene (PP), and polystyrene (PS). The annual dietary microplastic intake by the Peruvian population was estimated to be ~48.18 MP person-1 year-1 via A. atra consumption only, although values could vary depending on the region. The need for a better supply chain, handling conditions, and further research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.