Hfq is a bacterial pleiotropic regulator that mediates several aspects of nucleic acids metabolism. The protein notably influences translation and turnover of cellular RNAs. Although most previous contributions concentrated on Hfq's interaction with RNA, its association to DNA has also been observed in vitro and in vivo. Here, we focus on DNA-compacting properties of Hfq. Various experimental technologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy and small angle neutron scattering have been used to follow the assembly of Hfq on DNA. Our results show that Hfq forms a nucleoprotein complex, changes the mechanical properties of the double helix and compacts DNA into a condensed form. We propose a compaction mechanism based on protein-mediated bridging of DNA segments. The propensity for bridging is presumably related to multi-arm functionality of the Hfq hexamer, resulting from binding of the C-terminal domains to the duplex. Results are discussed in regard to previous results obtained for H-NS, with important implications for protein binding related gene regulation.
Tetracyclines have proven to be safe and effective antibiotics over decades but to date all approved members of the class have been discovered and manufactured by chemical modification of fermentation products, which greatly limits the number of new structures that can be explored as future medicines. This review summarizes research leading to the development of a platform synthetic technology that enabled the discovery of the clinical candidate eravacycline, as well as other promising new tetracycline antibiotics, and provides the basis for a practical route for their manufacture. The approach argues for a reassessment of other antibiotic classes based on natural products for which practical, fully synthetic routes have not yet been developed, suggesting that these may represent underdeveloped resources with great potential to offer safer and more effective anti-infective agents.
Soft rot Pectobacteriaceae (SRP), typical of Pectobacterium and Dickeya, are a class of Gram-negative bacterial pathogens that cause devastating diseases on a wide range of crops and ornamental plants worldwide. Quorum sensing (QS) is a cell-cell communication mechanism regulating the expression of specific genes by releasing QS signal molecules associated with cell density, in most cases, involving in the vital process of virulence and infection. In recent years, several types of QS systems have been uncovered in Dickeya pathogens to control diverse biological behaviors, especially bacterial pathogenicity and transkingdom interactions. This review depicts an integral QS regulation network of Dickeya, elaborates in detail the regulation of specific QS system on different biological functions of the pathogens and hosts, aiming at providing a systematic overview of Dickeya pathogenicity and interactions with hosts, and, finally, expects the future prospective of effectively controlling the bacterial soft rot disease caused by Dickeya by quenching the key QS signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.