Two fundamental approaches for the coupling of microfabricated devices to electrospray mass spectrometry (ESI-MS) have been developed and evaluated. The microdevices, designed for electrophoretic separation, were constructed from glass by standard photolithographic/wet chemical etching techniques. Both approaches integrated sample inlet ports, preconcentration sample loops, the separation channel, and a port for ESI coupling. In one design, a modular, reusable microdevice was coupled to an external subatmospheric electrospray interface using a liquid junction and a fused silica transfer capillary. The transfer capillary allowed the use of an independent electrospray interface as well as fiber optic UV detection. In the second design, a miniaturized pneumatic nebulizer was fabricated as an integral part of the chip, resulting in a very simple device. The on-chip pneumatic nebulizer provided control of the flow of the electrosprayed liquid and minimized the dead volume associated with droplet formation at the electrospray exit port. Thus, the microdevice substituted for a capillary electrophoresis instrument and an electrospray interface--traditionally two independent components. This type of microdevice is simple to fabricate and may thus be developed either as a part of a reusable system or as a disposable cartridge. Both devices were tested on CE separations of angiotensin peptides and a cytochrome c tryptic digest. Several electrolyte systems including a transient isotachophoretic preconcentration step were tested for separation and analysis by an ion trap mass spectrometer.
SummaryWe present the first integrative computational fluid dynamics (CFD) study of near-and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of ʻflyingʼ an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near-and far-field wake dynamics and shows the detailed three-dimensional (3D) near-and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down-and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.Supplementary material available online at http://jeb.biologists.org/cgi/content/full/211/2/239/DC1
a b s t r a c tAn integrated and rigorous model for the simulation of insect flapping flight is addressed. The method is very versatile, easily integrating the modeling of realistic wing-body morphology, realistic flapping-wing and body kinematics, and unsteady aerodynamics in insect flight. A morphological model is built based on an effective differential geometric method for reconstructing geometry of and a specific grid generator for the wings and body; and a kinematic model is constructed capable to mimic the realistic wing-body kinematics of flapping flight. A fortified FVM-based NS solver for dynamically moving multi-blocked, overset-grid systems is developed and verified to be self-consistent by a variety of benchmark tests; and evaluation of flapping energetics is established on inertial and aerodynamic forces, torques and powers. Validation of this integrated insect dynamic flight simulator is achieved by comparisons of aerodynamic force-production with measurements in terms of the time-varying and mean lift and drag forces. Results for three typical insect hovering flights (hawkmoth, honeybee and fruitfly) over a wide rang of Reynolds numbers from O(10 2 ) to O(10 4 ) demonstrate its feasibility in accurately modeling and quantitatively evaluating the unsteady aerodynamic mechanisms in insect flapping flight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.