HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and/or induction chromosome aberrations, as well as the possibility of vertical transmission of HBV via the germ line to the next generation.
Ankylosing spondylitis (AS) is a chronic rheumatic disease that mainly affects the spinal joints (vertebrae). Spondylitis means inflammation of the spine, and ankylosing spondylitis means that bones tend to fuse. The AS causes the vertebrae to swell in the spine. Therefore, based on protein interaction network analysis, we conducted in-depth research on the molecular mechanism of key regulatory factors in the AS disease process. We carried out a differential analysis of the expression of miRNAs in disease samples and miRNAs in normal samples. Protein network interaction analysis is performed according to a group of target genes regulated by significant differentially expressed miRNAs and clustered into an interaction module. In addition, enrichment analysis of functions and pathways was performed on these modular genes. Based on the predictive analysis of multidimensional regulators, we identified a range of regulatory factors that have potential regulatory effects on AS, such as endogenous genes and transcription factors. We obtained 20 differentially expressed miRNAs and 7082 target genes and clustered into 11 modules. Enrichment results showed that these modular genes are mainly involved in the functions and pathways of protein polyubiquitination, neutrophil activation involved in immune response, and Wnt signaling pathway. We revealed ten transcription factors (MYC, NFKB1, and TP53). After network connectivity analysis, we obtained 12 internal drive genes (UBE2D1, CCNF, and NEDD4). These core genes are thought to be potential regulators of AS.MYC is also considered to be a core factor that inhibits SART3 phosphorylation and plays a vital role in the immunological pathogenesis of AS. The combination of the above analysis results can provide a new idea for biologists and medical scientists to study the immune pathogenesis of AS and can provide a valuable reference for subsequent treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.