We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.
Based on choice experiments conducted via face-to-face interviews with 435 participants in four provincial areas of China (Shanghai, Zhejiang, Jiangsu, and Guangdong), Chinese consumers' preferences and motives for purchasing eco-labeled rice are examined in this study. The heterogeneous effects of each motivating channel are also investigated. The results reveal positive correlations between premiums for eco-labeled rice and consumers' concerns about food safety and the environment, suggesting that health benefits and environmental considerations are the two critical motivations. The willingness to pay for eco-labeled rice does not increase with consumers' knowledge of the different production standards indicated by each eco-label. Individual characteristics that determine each class are further explored through a seemingly irrelevant regression to identify the target group of consumers for policy-makers.
[1] The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO 2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO 2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from À50 to 50 and À3 to 20 W m À2 , respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the biomass energy storages act to dampen the diurnal temperature range. From these simulation results, we concluded that biomass heat and biochemical energy storages are an integral and substantial part of the surface energy budget and play a role in modulating land surface temperatures and must be considered in studies of land-atmosphere interactions and climate modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.