Isopropylamine was taken as a raw material to synthesize a new multi-alkyl multiple quaternary-ammonium salts gemini surfactant bis[2-hydroxy-3-(dodecyldimethylammonio)propyl]-isopropylamine dichloride. The structure of the synthetic product was characterized by 1H NMR and FTIR. The surface activity was investigated; the inhibition efficiencies and inhibition mechanism of the synthetic product were studied by weight loss method, electrochemical method, microscopic morphology observation, and adsorption model calculation. The results indicate that cmc of synthetic product was 9.204 × 10-4 mol/L; when the concentrations were lower than cmc, the inhibition efficiencies rose substantially, which was up to 89.3% with the concentration of 9.204 × 10-4 mol/L; when they were higher than cmc, inhibition efficiencies were basically unchanged; polarization tests showed that the synthesis product could restrain both anodic and cathodic reactions; when the concentrations were lower than cmc, the adsorption of the synthetic product conformed to the Langmuir model, which formed monolayer on the 2024 Al-Cu-Mg alloy surface; when they were higher than cmc, it formed bilayer, so the adsorption of the synthetic product did not conform to the Langmuir model anymore.
In this paper, a novel method combining electrochemical impedance spectroscopy (EIS) and phase shift was used to systematically study the effect of corrosion inhibitor (sodium succinate, sodium dodecyl benzene sulfonate, and new corrosion inhibitor, namely, bis [2-amino-3-(dodecyl dimethyl quaternary ammonium) propyl]-propylamine dichloro) on crack initiation and propagation of aluminum alloy during the slow strain rate tensile process. Using a variety of characterization methods to verify the feasibility of using the new method for in-situ prediction, Kramers–Kronig transformations have been used to validate the experimental data obtained with the EIS measurements. The corrosion inhibition mechanism of these three kinds of inhibitors in the SSRT process was analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.