Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars’ resistant to FSP.
Faba bean is an important edible legume crop in China. Due to its huge genome size and no available reference genome, SNP marker is very limited in faba bean. To identify genome-wide SNP markers, we obtained 35.47 Gb data from eight landraces by RAD-sequencing, with an average of 4.77 Gb data for each accession. A total of 245443516 reads were generated, the single accession has an average of 30680439.5 reads, and the average length of the reads reaches to 144 bp. The Q20 and Q30 values were over 97.89% and 93.83%, respectively. The GC content between the reads varied from 38.05% to 40.09%. Using a special Bayesian method under the situation of no reference genome, we identified 3722 SNPs among the eight landraces. Regarding the single accession, the detected SNPs varied from 3278 to 3578, and the homozygous SNPs number was larger than that of heterozygous SNPs for most of accessions. For the SNP types, T:A->C:G type has the largest proportion (38.8%), followed by C:G->T:A (28.0%) and the smallest is T:A->A:T (7.5%). 31 SNPs were selected to convert into KASP markers, and they showed a success rate of 66.7% through amplifying on 46 accessions. The SNPs in this study provide a strong genetic tool for germplasm identification, gene mapping and molecular breeding in faba bean.
Compositional, functional, and nutritional properties are important for the use-value assessments of wild and cultivated edible plants. The aim of this study was to compare the nutritional composition, bioactive compounds, volatile compounds, and potential biological activities of cultivated and wild Zingiber striolatum. Various substances, such as soluble sugars, mineral elements, vitamins, total phenolics, total flavonoids, and volatiles, were measured and analyzed using UV spectrophotometry, ICP-OES, HPLC, and GC-MS methods. The antioxidant capacity of a methanol extract of Z. striolatum, as well as the hypoglycemic abilities of its ethanol and water extracts, were tested. The results showed that the contents of soluble sugar, soluble protein, and total saponin in the cultivated samples were higher, while the wild samples contained higher amounts of K, Na, Se, vitamin C, and total amino acids. The cultivated Z. striolatum also showed a higher antioxidant potential, while the wild Z. striolatum exhibited a better hypoglycemic activity. Thirty-three volatile compounds were identified using GC-MS in two plants, with esters and hydrocarbons being the main volatile compounds. This study demonstrated that both cultivated and wild Z. striolatum have a good nutritional value and biological activity, and can be used as a source of nutritional supplementation or even in medication.
Wild, edible plants have received increasing attention as an important complement to cultivate vegetables, as they represent an easily accessible source of nutrients, mineral elements, and antioxidants. In this study, the tender stems and leaves of Gonostegia hirta, an edible species for which only scarce data are available in the literature, are thoroughly evaluated for their nutritional profile, chemical characterization, and antioxidant activity. Being considered as an underexploited, potentially edible plant, the nutritional composition of Gonostegia hirta was identified, and several beneficial compounds were highlighted: sugars, potassium, calcium, organic acids, fatty acids, phenolics, and flavonoids. A total of 418 compounds were identified by metabolomic analysis, including phenolic acids, flavonoids, amino acids, lipids, organic acids, terpenoids, alkaloids, nucleotides, tannins, lignans, and coumarin. The plant sample was found to have good antioxidant capacities, presented by DPPH, FRAP, ABTS+, hydroxyl radical scavenging capacity, and its resistance to the superoxide anion radical test. In general, Gonostegia hirta has a good nutritional and phytochemical composition. The health benefits of Gonostegia hirta as a vegetable and herbal medicine is important for both a modern diet and use in medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.