Salt stress is an abiotic stress known to affect plant growth and distribution. In this investigation, this expectation was tested on germination, seedlings' survival and genetic diversity of Robinia pseudoacacia (black locust). To do this, seeds of R. pseudoacacia collected from a natural population were sown on soil media of different salt concentrations (0.6, 1, 2, 3, 4, 5, 6, 7 and 8 g/kg), after which germination and seedlings survival rates were observed. Subsequently, genomic DNA was isolated from leaf samples for genetic analysis using 10 nuclear SSR primers. The results show that seed germination and seedling survival significantly reduced with increase in salt concentration. Specifically, R. pseudoacacia seedlings did not grow on soils with salt concentrations higher than 6 g/kg. As regards the effect of salt stress on genetic diversity of R. pseudoacacia seedlings, the overall result from 10 nuclear microsatellite primers revealed an increase in heterozygosity as salt concentration increased, which suggested selection against homozygosity under salt stress. This result further supports the fact that heterozygosity is one of the factors that ensures that tree populations are adaptable to salt stress. Therefore, management of forest tree populations should be geared towards managing genetic diversity in order to engender survival under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.