Grouting is an important method to reinforce soft coal roadway, and the presence of primary cracks in the coal body has an important influence on the grouting effect. With the discrete element simulation method, the grouting process of the soft coal seam was simulated. The mechanism of primary cracks on grouting was revealed, while the influence of fracture characteristics and grouting pressure on the grouting effect was analyzed. The results demonstrated that grouting in the soft coal seam involves the stages of seepage, rapid splitting, slow splitting, and stability. Due to the presence of primary cracks, the grouting diffusion radius increased significantly. Under the slurry pressure, the tensile stress concentration was formed at the crack tip, and the slurry split the coal once the splitting pressure was reached. In addition, the distribution characteristics of fractures are found to have a great influence on the grouting effect. It is observed that smaller fracture spacing is associated with a larger slurry diffusion radius and thus easier penetration of the primary crack tips. The fracture angle affects the direction of fracture propagation. The secondary fracture formed by splitting is a tensile fracture, which is more likely to extend along the direction parallel to the maximum principal stress. Overall, these simulation results have guiding significance for the setting of reasonable spacing of grouting holes in the practice of grouting engineering.
Large-area goafs in a gypsum mine tend to collapse after 10 or more years, but the influencing factors are still unclear, and the effects of multiple factors have not been comprehensively considered. In this study, the failure mechanism and collapse mode of the room-pillar goaf structure were analyzed, and the uniaxial compressive strength tests of the pillars under different conditions were carried out in a laboratory. The influences of water, temperature, and time on the strength of the gypsum rock were considered. These three factors weakened the gypsum rock in different degrees. After 120 days of immersion, water had the greatest effect with a strength-weakening rate of 52.61%. After 20 temperature cycles, changes in temperature had little effect with a strength-weakening rate of 12.60%. After 25 years of aging, the strength-weakening rate of time was 25.13%. These results show how different factors affect the instability and collapse of the goaf structure, which are of great significance for predicting and preventing this from happening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.