The genus Flavivirus includes related, unclassified segmented flavi-like viruses, two segments of which have homology with flavivirus RNA-dependent RNA polymerase NS5 and RNA helicase-protease NS3. This group includes such viruses as Jingmen tick virus, Alongshan virus, Yanggou tick virus and others. We detected the Yanggou tick virus in Dermacentor nuttalli and Dermacentor marginatus ticks in two neighbouring regions of Russia. The virus prevalence ranged from 0.5% to 8.0%. We detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia. The virus prevalence ranged from 0.6% to 7.8%. We demonstrated the successful replication of the Yanggou tick virus and Alongshan virus in IRE/CTVM19 and HAE/CTVM8 tick cell lines without a cytopathic effect. According to the phylogenetic analysis, we divided the Alongshan virus into two groups: an Ixodes persulcatus group and an Ixodes ricinus group. In addition, the I. persulcatus group can be divided into European and Asian subgroups. We found amino acid signatures specific to the I. ricinus and I. persulcatus groups and also distinguished between the European and Asian subgroups of the I. persulcatus group.
Vaccines based on the strain Sofjin of the Far-Eastern tick-borne encephalitis virus (TBEV) subtype have been used for TBE prophylaxis for over 50 years in Russia and neighboring countries. On the wide territory, where all known TBEV subtypes are circulating, the cultural, purified, concentrated, inactivated TBE vaccine Moscow has been shown to be safe and efficacious in a massive immunization. In the present work, we describe the genome of the vaccine strain Sofjin. We have shown that it differs from TBEV strains previously published with the name “Sofjin”. Moreover, we have shown the stability of the virus during the vaccine manufacturing process on the molecular level.
Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a serious public health threat in northern Eurasia. Three subtypes of TBEV are distinguished. Inactivated vaccines are available for TBE prophylaxis, and their efficacy to prevent the disease has been demonstrated by years of implication. Nevertheless, rare TBE cases among the vaccinated have been registered. The present study aimed to evaluate the protective efficacy of 4 TBEV vaccines against naturally circulating TBEV variants. For the first time, the protection was evaluated against an extended number of phylogenetically distinct TBEV strains isolated in different years in different territories. The protective effect did not strongly depend on the infectious dose of the challenge virus or the scheme of vaccination. All vaccines induced neutralizing antibodies in protective titers against the TBEV strains used, although the vaccines varied in the spectra of induced antibodies and protective efficacy. The protective efficacy of the vaccines depended on the individual properties of the vaccine strain and the challenge virus, rather than on the subtypes. The neutralization efficiency appeared to be dependent not only on the presence of antibodies to particular epitopes and the amino acid composition of the virion surface but also on the intrinsic properties of the challenge virus E protein structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.