Indoleamine 2,3-dioxygenase-1 (IDO1) mediates the degradation of L-tryptophan (L-Trp) and is constitutively expressed in the chorionic vascular endothelium of the human placenta with highest levels in the microvasculature. Given that endothelial expression of IDO1 has been shown to regulate vascular tone and blood pressure in mice under the condition of systemic inflammation, we asked whether IDO1 is also involved in the regulation of placental blood flow and if yes, whether this function is potentially impaired in intrauterine growth restriction (IUGR) and pre-eclampsia (PE). In the large arteries of the chorionic plate L-Trp induced relaxation only after upregulation of IDO1 using interferon gamma and tumor necrosis factor alpha. However, ex vivo placental perfusion of pre-constricted cotyledonic vasculature with L-Trp decreases the vessel back pressure without prior IDO1 induction. Further to this finding, IDO1 protein expression and activity is reduced in IUGR and PE when compared to gestational age–matched control tissue. These data suggest that L-Trp catabolism plays a role in the regulation of placental vascular tone, a finding which is potentially linked to placental and fetal growth. In this context our data suggest that IDO1 deficiency is related to the pathogenesis of IUGR and PE.
A thorough understanding of nanoparticle bio-distribution at the feto-maternal interface will be a prerequisite for their diagnostic or therapeutic application in women of childbearing age and for teratologic risk assessment. Therefore, the tissue interaction of biocompatible dendritic polyglycerol nanoparticles (dPG-NPs) with first- trimester human placental explants were analyzed and compared to less sophisticated trophoblast-cell based models. First-trimester human placental explants, BeWo cells and primary trophoblast cells from human term placenta were exposed to fluorescence labeled, ∼5 nm dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10 nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence microscopy. To assess the impact of dPG-NP on trophoblast integrity and endocrine function, LDH, and hCG releases were measured. A dose- and charge-dependent accumulation of dPG-NPs was observed at the early placental barrier and in cell lines, with positive dPG-NP-surface causing deposits even in the mesenchymal core of the placental villi. No signs of plasma membrane damage could be detected. After 24 h we observed a significant reduction of hCG secretion in placental explants, without significant changes in trophoblast apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP’s surface charge substantially influences their bio-distribution at the feto-maternal interface, with positive charge facilitating trans-trophoblast passage, and in contrast to more artificial models, the first-trimester placental explant culture model reveals potentially hazardous influences of charged dPG-NPs on early placental physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.