BackgroundIncreasing evidence supports a critical role of chronic inflammation in intracranial aneurysm (IA). Understanding how the immunological alterations in IA provides opportunities for targeted treatment. However, there is a lack of comprehensive and detailed characterization of the changes in circulating immune cells in IA.ObjectiveTo perform a comprehensive and detailed characterization of the changes in circulating immune cells in patients with IA.MethodsPeripheral blood mononuclear cell samples from IA patients (n = 26) and age-and sex-matched healthy controls (HCs, n = 20) were analyzed using high dimensional mass cytometry, and the frequency and phenotype of immune cell subtypes were assessed.ResultsWe identified 28 cell clusters and found that the immune signature of IA consists of cluster changes. IA patients exhibited dysfunction of immunity, with dysregulation of CD4+ T-cell clusters, increased B cells and monocytes, and decreased CD8+ T cells, DNT cells, and DPT cells. Moreover, compared with findings in HC, IA was associated with enhanced lymphocyte and monocyte immune activation, with a higher expression of HLA-DR, CXCR3, and CX3CR1. In addition, the expression of TLR4, p-STAT3, and the exhaustion marker PD1 was increased in T cells, B cells, and NK cells in IA patients.ConclusionsOur data provide an overview of the circulating immune cell landscape of IA patients, and reveal that the dysfunction of circulating immunity may play a potential role in the development of IA.
Context Genistein is a multifunctional natural compound. Objective In this study, we demonstrate the activity of genistein on non-small lung cancer A549 and 95D cells. Materials and methods A CCK8 assay was used to detect the cytotoxicity of genistein (0, 25, 50, 100, 150, 200 and 250 μM) on A549 and 95D cells for 48 h. AnnexinV-FITC/PI and TUNEL assay were performed to examine the apoptotic cell death induced by genistein (0, 50, 100 and 150 μM, 48 h). Intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential were measured by flow cytometry. Mitochondrial activity in A549 and 95D cells, treated with 0, 50, 100 and 150 μM genistein for 48 h was detected by MitoTracker Orange staining. Western blot analysis was performed to evaluate the expression of the mitochondrial apoptosis-related proteins. Meanwhile, the expression level of FOXO3a/PUMA signalling was measured by flow cytometry and Western blot assay. Results IC 50 value of genistein against 95D cells and A549 cells was 32.96 ± 2.91 and 110.6 ± 2.41 μM, respectively. The percentage of apoptotic death cells was 20.03%, 29.26% and 27.14% in 95D cells, and 41.62%, 55.24% and 43.45% in A549 cells when treated with 50, 100 and 150 μM genistein, respectively. Our observations also revealed that genistein could elevate intracellular ROS generation, decrease mitochondrial membrane potential, decrease mitochondrial activity (MitoTracker Orange staining), and up-regulate the expression of mitochondrial apoptosis-related proteins. Further examinations revealed that the expression level of FOXO3a and PUMA in NSCLC was significantly increased by genistein. Discussion and conclusions Our data may provide basic information for further development of genistein as a promising lead compound targeting NSCLC by inducing mitochondrial apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.