The beneficial effects of organic acids (OAs) excretion from plant roots were first proposed as being associated with the mechanism of superior phosphorus utilization by the cluster roots of white lupin (Lupinus albus L.), and these effects are now widely accepted as pleiotropic effects associated with stress tolerance of plants. Excreted OAs detoxify rhizotoxic aluminum, recruit beneficial bacterium for induced systemic resistance, and modify root architecture to enhance phosphorus starvation. OA excretion is probably optimized in the carbon economy and is coordinately regulated with other traits that additively confer each stress factor. Here we present an overview of the molecular physiology of OA excretion from roots, how plants activate OA excretion, and how this excretion can be managed as a specific response.
Malate-efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1), which mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum-resistance in Arabidopsis thaliana. Several studies showed that root AtALMT1 expression is rapidly observed in response to aluminum (within 1-hour), this early induction is an important mechanism to immediately protect roots from aluminum-toxicity. Additionally, identifying the molecular mechanisms that underlie rapid aluminum-resistance responses should lead to a better understanding of plant aluminum-sensing and -signal transduction mechanisms. In this study, histochemical analyses using GFP-tagged STOP1 proteins showed that STOP1 proteins were accumulated in the nucleus soon after aluminum-treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1-induction were observed in the presence of the protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2), but not for Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for the early induction. Finally, we report that GDH1 and 2 which are the target of STOP1 are novel aluminum-resistance genes in Arabidopsis.
To identify the upstream signaling of aluminum-induced malate secretion through aluminum-activated malate transporter 1 (AtALMT1), a pharmacological assay using inhibitors of human signal transduction pathways was performed. Early aluminum-induced transcription of AtALMT1 and other aluminum-responsive genes was significantly suppressed by phosphatidylinositol 4-kinase (PI4K) and phospholipase C (PLC) inhibitors, indicating that the PI4K–PLC metabolic pathway activates early aluminum signaling. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and PI4K reduced aluminum-activated malate transport by AtALMT1, suggesting that both the PI3K and PI4K metabolic pathways regulate this process. These results were validated using T-DNA insertion mutants of PI4K and PI3K-RNAi lines. A human protein kinase inhibitor, putatively inhibiting homologous calcineurin B-like protein-interacting protein kinase and/or Ca-dependent protein kinase in Arabidopsis, suppressed late-phase aluminum-induced expression of AtALMT1, which was concomitant with the induction of an AtALMT1 repressor, WRKY46, and suppression of an AtALMT1 activator, Calmodulin-binding transcription activator 2 (CAMTA2). In addition, a human deubiquitinase inhibitor suppressed aluminum-activated malate transport, suggesting that deubiquitinases can regulate this process. We also found a reduction of aluminum-induced citrate secretion in tobacco by applying inhibitors of PI3K and PI4K. Taken together, our results indicated that phosphatidylinositol metabolism regulates organic acid secretion in plants under aluminum stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.