Urban agriculture is increasingly popular for social and economical benefits. However, edible crops grown in cities can be contaminated by airborne pollutants, thus leading to serious health risks. Therefore, we need a better understanding of contamination risks of urban cultivation to define safe practices. Here we study heavy metal risk in horticultural crops grown in urban gardens of Bologna, Italy. We investigated the effect of proximity to different pollution sources such as roads and railways, and the effect of the growing system used, that is soil versus soilless cultivation. We compared heavy metal concentration in urban and rural crops. We focused on surface deposition and tissue accumulation of pollutants during 3 years. Results show that in the city, crops near the road were polluted by heavy metals, with up to 160 mg per kilogram of dry weight for lettuce and 210 mg/kg for basil. The highest Cd accumulation of up to 1.2 mg/kg was found in rural tomato. Soilless planting systems enabled a reduction of heavy metal accumulation in plant tissue, of up to −71 % for rosemary leaves.
The influence of exposure to engineered nanoparticles (NPs) was studied in tomato plants, grown in a soil and peat mixture and irrigated with metal oxides (CeO2, Fe3O4, SnO2, TiO2) and metallic (Ag, Co, Ni) NPs. The morphological parameters of the tomato organs, the amount of component metals taken up by the tomato plants from NPs added to the soil and the nutrient content in different tomato organs were also investigated. The fate, transport and possible toxicity of different NPs and nutrients in tomato tissues from soils were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tomato yield depended on the NPs: Fe3O4-NPs promoted the root growth, while SnO2-NP exposure reduced it (i.e. +152.6 and -63.1 % of dry matter, respectively). The NP component metal mainly accumulated in the tomato roots; however, plants treated with Ag-, Co- and Ni-NPs showed higher concentration of these elements in both above-ground and below-ground organs with respect to the untreated plants, in addition Ag-NPs also contaminated the fruits. Moreover, an imbalance of K translocation was detected in some plants exposed to Ag-, Co- and Fe3O4-NPs. The component metal concentration of soil rhizosphere polluted with NPs significantly increased compared to controls, and NPs were detected in the tissues of the tomato roots using electron microscopy (ESEM-EDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.