During the measurement of friction force, the measured signal generally contains noise. To remove the noise and preserve the important features of the signal, a hybrid filtering method is introduced that uses the mutual information and a new waveform. This new waveform is the difference between the original signal and the sum of intrinsic mode functions (IMFs), which are obtained by empirical mode decomposition (EMD) or its improved versions. To evaluate the filter performance for the friction signal, ensemble EMD (EEMD), complementary ensemble EMD (CEEMD), and complete ensemble EMD with adaptive noise (CEEMDAN) are employed in combination with the proposed filtering method. The combination is used to filter the synthesizing signals at first. For the filtering of the simulation signal, the filtering effect is compared under conditions of different ensemble number, sampling frequency, and the input signal-noise ratio, respectively. Results show that CEEMDAN outperforms other signal filtering methods. In particular, this method is successful in filtering the friction signal as evaluated by the de-trended fluctuation analysis (DFA) algorithm.
Abstract:The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) has been used to propose a new method for filtering time series originating from nonlinear systems. The filtering method is based on fuzzy entropy and a new waveform. A new waveform is defined wherein Intrinsic Mode Functions (IMFs)-which are obtained by CEEMDAN algorithm-are firstly sorted in ascending order (the sorted IMFs is symmetric about center point, because at any point, the mean value of the envelope line defined by the local maxima and the local minima is zero), and the energy of the sorted IMFs are calculated, respectively. Finally, the new waveform with axial symmetry can be obtained. The complexity of the new waveform can be quantified by fuzzy entropy. The relevant modes (noisy signal modes and useful signal modes) can be identified by the difference between the fuzzy entropy of the new waveform and the next adjacent new waveform. To evaluate the filter performance, CEEMDAN and sample entropy, Ensemble Empirical Mode Decomposition (EEMD) and fuzzy entropy, and EEMD and sample entropy were used to filter the synthesizing signals with various levels of input signal-to-noise ratio (SNR in ). In particular, this approach is successful in filtering impact signal. The results of the filtering are evaluated by a de-trended fluctuation analysis (DFA) algorithm, revised mean square error (RMSE), and revised signal-to-noise ratio (RSNR), respectively. The filtering results of simulated and impact signal show that the filtering method based on CEEMDAN and fuzzy entropy outperforms other signal filtering methods.
A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant , the parameter gamma corresponding to RBF kernel and the epsilon parameter in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (, and ), respectively. The regression accuracy could be reflected by the coefficient of determination (). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.
A novel, non-contacted method is proposed to determine the cage slip of rolling bearing. Findings show that the roller and inner raceway can generate weak magnetic field (WMF). The WMF detection technology is introduced into the measurement domain of cage slip. The feature frequency of a roller and inner raceway, which reflect the cage slip, can be extracted simultaneously by the WMF sensor output signal. Here, the roller shares the same feature frequency with the cage. Compared with the traditional optical detection method, the proposed method does not require any pre-processing for rolling bearing. The cage slip is detected under different work conditions. The cage slip, which is determined by the proposed method, is consistent with that of the traditional optical method. It shows that the proposed method can be used to detect cage slip of rolling bearing. INDEX TERMS Cage slip, feature frequency, optical method, rolling bearing, weak magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.