ZnO–SnO2 hollow spheres and hierarchical nanosheets are successfully synthesized using an aqueous solution containing ZnO rods, SnCl4, and NaOH by using a simple hydrothermal method. The effects of hydrothermal temperature and time on the morphology of ZnO–SnO2 are investigated. The formation process of ZnO–SnO2 hollow spheres and nanosheets is discussed. The samples are characterized using X‐ray powder diffraction, transmission electron microscopy, scanning electron microscopy, and UV‐vis absorption spectroscopy. Both hollow spheres and hierarchical nanosheets show higher photocatalytic activities in the degradation of methyl orange than that of ZnO rods or SnO2.
Flower-like cobalt hydroxide [β-Co(OH) 2 ] consisting of nanosheet networks has been synthesized by a hydrothermal method from Co(CH 3 COO) 2 ·4H 2 O in mixtures of water and glycerol/ethylene glycol at 200°C. The morphology and phase of the cobalt hydroxide can be controlled by adjusting the experimental parameters that include cobalt acetate concentration and the volume ratio of water to glycerol/ethylene glycol. The possible formation mechanism of flower-like co-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.