Manganese-catalyzed sulfite activation (i.e., Mn(II)/sulfite) has emerged as an advanced oxidation process to produce sulfate radical (SO4•−) for water treatment. However, to maintain the catalytic activity of Mn(II) ion, solution acidity has to be kept below pH 4, which is difficult to maintain in practice. Moreover, Mn(II)/sulfite reaction is a strongly oxygen-dependent process, and purging air into reaction solution is another extra cost. To solve the above issues, we devised to implement electrolysis into Mn(II)/sulfite (i.e., electro/Mn(II)/sulfite process) for organic compound (bisphenol A, BPA) oxidation. It was revealed that, under near-neutral conditions (pH 6), the removal rate of 10 μM BPA was increased from 46.3%, by Mn(II)/sulfite process, to 94.2% by electro/Mn(II)/sulfite process. The enhancement of BPA removal after implementation of electrolysis to Mn(II)/sulfite process was investigated, and concluded to be a result of several pathways. In detail, the produced oxygen from water electrolysis, direct sulfite oxidation on anode, and local acidic pH at anode vicinity together play a role in promoting SO4•− production and, therefore, contaminant removal. Radical-scavenging assays confirmed the dominant role of SO4•− in electro/Mn(II)/sulfite process.
The regeneration and utilization of idle, old industrial buildings in urban areas has become a focus of urban development, owing to urban renewal and industrial structural adjustment. At the same time, the increasing demand for sports space has highlighted the insufficient supply of sports facilities in cities. To solve this dilemma, the transformation of old industrial buildings into sports venues has become another mode of recycling and reuse in recent years. Due to the many specialties, complex contents, and numerous influencing factors involved in the transformation process, the suitability of these buildings is uncertain. To ensure the suitability of the transformation project, the theory of old industrial buildings recycling and sports building design specifications was used. An index system was established for the evaluating the suitability of transforming old industrial buildings into stadiums, which included five first-level and twenty second-level indices. Based on the matter–element extension theory, a suitability evaluation model was constructed to transform old industrial buildings into sports venues. The correlation function of each evaluation index was calculated, and the index weight was determined using the entropy weight method to obtain the suitability grade of the renovation project, which was verified by the renovation project case. The research shows that the suitability level of the renovation project is level II, which is consistent with the actual situation, indicating that the evaluation model—based on entropy weight method and matter–element extension method—for the transformation of old industrial buildings and stadiums has high reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.