Diosgenin saponins isolated from Dioscorea species such as Dioscorea zingiberensis exhibit a broad spectrum of pharmacological activities. Diosgenin, the aglycone of diosgenin saponins, is an important starting material for production of steroidal drugs. However, how plants produce diosgenin saponins, and the origin and evolution of diosgenin saponin biosynthetic pathway remain a mystery. Here, we report a high-quality, 629-Mb genome of D. zingiberensis anchored on 10 chromosomes with 30,322 protein-coding genes. We reveal that diosgenin is synthesized in leaves (“source”), then converted into diosgenin saponins, and finally transported to rhizomes (“sink”) for storage in plants. By evaluating the distribution and evolutionary patterns of diosgenin saponins in Dioscorea species, we find that diosgenin saponin-containing may be an ancestral trait in Dioscorea and is selectively retained. The results of comparative genomic analysis indicate that the tandem duplication coupled with a whole genome duplication event provide key evolutionary resources for the diosgenin saponin biosynthetic pathway in the D. zingiberensis genome. Furthermore, comparative transcriptome and metabolite analysis among 13 Dioscorea species suggest that specific gene expression patterns of pathway genes promote the differential evolution of the diosgenin saponin biosynthetic pathway in Dioscorea species. Our study provides important insights and valuable resources for further understanding the biosynthesis, evolution and utilization of plant specialized metabolites such as diosgenin saponins.
The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways—the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.
Dioscorea zingiberensis is a medicinal herb containing a large amount of steroidal saponins, which are the major bioactive compounds and the primary storage form of diosgenin. The CYP72A gene family, belonging to cytochromes P450, exerts indispensable effects on the biosynthesis of numerous bioactive compounds. In this work, a total of 25 CYP72A genes were identified in D. zingiberensis and categorized into two groups according to the homology of protein sequences. The characteristics of their phylogenetic relationship, intron–exon organization, conserved motifs and cis-regulatory elements were performed by bioinformatics methods. The transcriptome data demonstrated that expression patterns of DzCYP72As varied by tissues. Moreover, qRT-PCR results displayed diverse expression profiles of DzCYP72As under different concentrations of jasmonic acid (JA). Likewise, eight metabolites in the biosynthesis pathway of steroidal saponins (four phytosterols, diosgenin, parvifloside, protodeltonin and dioscin) exhibited different contents under different concentrations of JA, and the content of total steroidal saponin was largest at the dose of 100 μmol/L of JA. The redundant analysis showed that 12 DzCYP72As had a strong correlation with specialized metabolites. Those genes were negatively correlated with stigmasterol and cholesterol but positively correlated with six other specialized metabolites. Among all DzCYP72As evaluated, DzCYP72A6, DzCYP72A16 and DzCYP72A17 contributed the most to the variation of specialized metabolites in the biosynthesis pathway of steroidal saponins. This study provides valuable information for further research on the biological functions related to steroidal saponin biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.