An amphiphilic glycopolymer, poly(D-gluconamidoethyl methacrylate -r-3-methacrylamido phenylboronic acid), which could self-assemble to form nanoparticles with a narrow size distribution, was synthesized. Transmission electron microscopy showed that the nanoparticles were spherical in shape with diameters of about 120 nm. The phenylboronic acid rendered the glycopolymer nanoparticles glucose sensitive, which was evident from swelling behavior of the nanoparticles at different glucose concentrations and was found to be dependent on the glucose level. Insulin was efficiently encapsulated within the nanoparticles (up to 15%), and the release of insulin increased with an increase in the level of glucose in the medium. Cell viability tests proved that the glycopolymer nanoparticles had good cytocompatibility, due to which the glycopolymers have the potential to be used in biomedical fields.
We presented here a facile strategy for fabricating boronic acid-functionalized nanoparticles based on the complexation of phenylboronic acids in poly(3-methacrylamido phenylboronic acid) (PMAPBA) and glucose moieties in dextran via boronic acid-diol interactions. The formation of boronate crosslinked nanoparticles was confirmed by Fourier transform infrared spectrometry, thermal analysis, transmission electron micrographs, dynamic light scattering and UV spectrometry. The nanoparticles were well dispersed as individual, spherically shaped particles with an average size of 100 nm. The glucose-sensitivity was revealed by the swelling behavior of the nanoparticles at different glucose concentrations. Furthermore, insulin was encapsulated in the nanoparticles with a loading capacity up to 22%, and the structure of insulin had not been distorted in the loading procedure. The insulin release increased with the enhancement of the glucose level in the medium. More importantly, the nanoparticles had good cytocompatibility, as demonstrated by in vitro experiments. The facility of this strategy together with the high loading capacity, glucose-sensitivity and cytocompatibility of the produced nanoparticles should greatly boost their application in drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.