Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA) based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM) classification, which are valuable when human-annotated keywords are not available. We used a standard benchmark dataset and a homemade patent dataset to evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct technological fields related to autonomous cars (GPS systems, lidar systems, object recognition systems, radar systems, and vehicle control systems). We compared our method with Frequency, Term Frequency-Inverse Document Frequency (TF-IDF), TextRank and Rapid Automatic Keyword Extraction (RAKE). The experimental results show that our proposed algorithm provides a promising way to extract keywords from patent texts for patent classification.
In response to the difficulty of plant leaf disease detection and classification, this study proposes a novel plant leaf disease detection method called deep block attention SSD (DBA_SSD) for disease identification and disease degree classification of plant leaves. We propose three plant leaf detection methods, namely, squeeze-and-excitation SSD (Se_SSD), deep block SSD (DB_SSD), and DBA_SSD. Se_SSD fuses SSD feature extraction network and attention mechanism channel, DB_SSD improves VGG feature extraction network, and DBA_SSD fuses the improved VGG network and channel attention mechanism. To reduce the training time and accelerate the training process, the convolutional layers trained in the Image Net image dataset by the VGG model are migrated to this model, whereas the collected plant leaves disease image dataset is randomly divided into training set, validation set, and test set in the ratio of 8:1:1. We chose the PlantVillage dataset after careful consideration because it contains images related to the domain of interest. This dataset consists of images of 14 plants, including images of apples, tomatoes, strawberries, peppers, and potatoes, as well as the leaves of other plants. In addition, data enhancement methods, such as histogram equalization and horizontal flip were used to expand the image data. The performance of the three improved algorithms is compared and analyzed in the same environment and with the classical target detection algorithms YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 tiny. Experiments show that DBA_SSD outperforms the two other improved algorithms, and its performance in comparative analysis is superior to other target detection algorithms.
A novel, efficient, and accurate method to detect gear defects under a complex background during industrial gear production is proposed in this study. Firstly, we first analyzed image filtering and smoothing techniques, which we used as a basis to develop a complex background-weakening algorithm for detecting the microdefects of gears. Subsequently, we discussed the types and characteristics of gear manufacturing defects. Under the complex background of image acquisition, a new model S-YOLO is proposed for online detection of gear defects, and it was validated on our experimental platform for online gear defect detection under a complex background. Results show that S-YOLO has better recognition of microdefects under a complex background than the YOLOv3 target recognition network. The proposed algorithm has good robustness as well. Code and data have been made available.
Equipment condition monitoring and diagnosis is an important means to detect and eliminate mechanical faults in real time, thereby ensuring safe and reliable operation of equipment. This traditional method uses contact measurement vibration signals to perform fault diagnosis. However, a special environment of high temperature and high corrosion in the industrial field exists. Industrial needs cannot be met through measurement. Mechanical equipment with complex working conditions has various types of faults and different fault characterizations. The sound signal of the microphone non-contact measuring device can effectively adapt to the complex environment and also reflect the operating state of the device. For the same workpiece, if it can simultaneously collect its vibration and sound signals, the two complement each other, which is beneficial for fault diagnosis. One of the limitations of the signal source and sensor is the difficulty in assessing the gear state under different working conditions. This study proposes a method based on improved evidence theory method (IDS theory), which uses convolutional neural network to combine vibration and sound signals to realize gear fault diagnosis. Experimental results show that our fusion method based on IDS theory obtains a more accurate and reliable diagnostic rate than the other fusion methods.
At present, the research on rectangular grasp strategy is generally based on object detection algorithm, which limits the improvement of model accuracy and generalization performance. This paper studies the semantic segmentation model based on residual network, and uses it to generate grasp strategies. The improved algorithm model not only achieves excellent rectangular grasping strategy prediction, but also has good generalization performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.