Background and Aims: Previous work has shown the association between blood-based methylation of coagulation factor II receptor-like 3 gene (F2RL3) and cardiovascular mortality in Caucasians. However, the diagnostic value of F2RL3 methylation for CHD is still unknown. The aim of our study was to evaluate the association between blood-based F2RL3 methylation and the risk of CHD in the Chinese population.Methods: The methylation level of F2RL3 was quantified by mass spectrometry in a case-control study with 180 CHD cases and 184 controls. The association between F2RL3 methylation intensity and CHD was assessed by logistic regression models, controlling confounding factors.Results: The hypomethylation in F2RL3_A amplicon was significantly associated with CHD (odds ratio (ORs) per -10% methylation: 1.22–1.42, p < 0.035 for six out of seven CpG loci). Specifically, this significant association was observed in elderly CHD patients (≥60 years), myocardial infarction (MI) patients, heart failure patients and the patients with minor to medium cardiac function impairment (NYHA Ⅰ&Ⅱ CHD cases) (ORs per -10% methylation: 1.35–1.58, 1.32–2.00, 1.29–1.43, 1.25–1.44; p < 0.024, 0.033, 0.035, 0.025, respectively). However, F2RL3_B CpG sites showed no or very weak association with CHD. The combination of F2RL3_A_CpG_1 and F2RL3_A_CpG_3 methylation levels could efficiently discriminate CHD, MI, heart failure, NYHA I&II CHD, and elderly CHD patients from controls (area under curve (AUC) = 0.75, 0.79, 0.75, 0.76, and 0.82, respectively).Conclusion: We propose blood-based F2RL3 methylation as a potential biomarker for CHD, especially for people with older age or with the status of MI. The combination of F2RL3 methylation and conventional risk factors might be an approach to evaluate CHD at early stage.
SPEC P16/CEN3/7/17 Probe fluorescence-in-situ-hybridization (FISH) has become the most sensitive method in indentifying the urothelial tumors and loss of P16 has often been identified in low-grade urothelial lesions; however, little is known about the significations of other P16 genetic status (normal and amplification) in bladder cancer.We detected P16 gene status by FISH in 259 urine samples and divided these samples into 3 groups: 1, normal P16; 2, loss of P16; and 3, amplified P16. Meanwhile, p16INK4a protein expression was measured by immunocytochemistry and we characterized the clinicopathologic features of cases with P16 gene status.Loss of P16 occurred in 26.2%, P16 amplification occurred in 41.3% and P16 gene normal occurred in 32.4% of all cases. P16 genetic status was significantly associated with tumor grade and primary tumor status (P = .008 and .017), but not with pathological tumor stage, overall survival, and p16 protein expression. However, P16 gene amplification accompanied protein high-expression has shorter overall survival compared with the overall patients (P = .023), and P16 gene loss accompanied loss of protein also had the tendency to predict bad prognosis (P = .067).Studies show that the genetic status of P16 has a close relation with the stages of bladder cancer. Loss of P16 is associated with low-grade urothelial malignancy while amplified P16 donotes high-grade. Neither P16 gene status nor p16INK4a protein expression alone is an independent predictor of urothelial bladder carcinoma, but combine gene and protein status together providing useful information on the clinical outcome of these patients.
Background Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based methylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the blood is associated with CHD in the Chinese population. Methods In this case–control study, 180 CHD patients recruited at their first registration in our study center, and 184 controls randomly selected from the people who participated in the annual health examination were enrolled. Methylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic regression analyses adjusted for covariant. Results Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associated with increased odds of being a CHD patient (OR per − 10% methylation = 1.42 after adjustment for age, gender, and batch effect; p = 0.032 by multiple testing corrections). No association between blood-based AHRR methylation and CHD was found. Conclusions 6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methylation and conventional risk factors might be an intermediate step towards the early detection of CHD.
Background: Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based methylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the blood is associated with CHD in the Chinese population.Methods: In this case-control study,180 CHD patients and 184 controls were enrolled. Methylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic regression analyses adjusted for covariant.Results: Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associated with increased odds of CHD patients with heart failure and early cardiac dysfunction (OR per -10% methylation = 1.59 and 1.65; p = 0.012 and 0.020 by multiple testing corrections, respectively). No association between blood-based AHRR methylation and CHD was found.Conclusions: 6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methylation and conventional risk factors might be an intermediate step towards the early detection of CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.