We report here the remarkable properties of PAd3, a crystalline air-stable solid accessible through a scalable SN1 reaction. Spectroscopic data reveal that PAd3, benefiting from the polarizability inherent to large hydrocarbyl groups, exhibits unexpected electron releasing character that exceeds other alkylphosphines and falls within a range dominated by N-heterocyclic carbenes. Dramatic effects in catalysis are also enabled by PAd3 during Suzuki-Miyaura cross-coupling of chloro(hetero)arenes (40 examples) at low Pd loading, including the late-stage functionalization of commercial drugs. Exceptional space-time yields are demonstrated for the syntheses of industrial precursors to valsartan and boscalid from chloroarenes with ∼2 × 10(4) turnovers in 10 min.
ObjectiveHuman leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS.MethodsFlow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition.ResultsThe AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion.ConclusionsERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment.
Group 10 metal catalysts have shown much promise for the copolymerization of nonpolar with polar alkenes to directly generate functional materials, but access to high copolymer molecular weights nevertheless remains a key challenge toward practical applications in this field. In the context of identifying new strategies for molecular weight control, we report a series of highly polarized P(V)-P(III) chelating ligands that manifest unique space filling and electrostatic effects within the coordination sphere of single component Pd polymerization catalysts and exert important influences on (co)polymer molecular weights. Single component, cationic phosphonic diamide-phosphine (PDAP) Pd catalysts are competent to generate linear, functional polyethylenes with M up to ca. 2 × 10 g mol, significantly higher than prototypical catalysts in this field, and with polar content up to ca. 9 mol %. Functional groups are positioned by these catalysts almost exclusively along the main chain, not at chain ends or ends of branches, which mimics the microstructures of commercial linear low-density polyethylenes. Spectroscopic, X-ray crystallographic, and computational data indicate PDAP coordination to Pd manifests cationic yet electron-rich active species, which may correlate to their complementary catalytic properties versus privileged catalysts such as electrophilic α-diimine (Brookhart-type) or neutral phosphine-sulfonato (Drent-type) complexes. Though steric blocking within the catalyst coordination sphere has long been a reliable strategy for catalyst molecular weight control, data from this study suggest electronic control should be considered as a complementary concept less prone to suppression of comonomer enchainment that can occur with highly sterically congested catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.