The fermentation of endophytic Nigrospora chinensis GGY-3 resulted in the isolation
of tropolone stipitaldehyde (1), which exhibited broad-spectrum
inhibition activity against
fungi and bacteria, especially against Phytophthora
capsici, with an EC50 value of 0.83 μg/mL
and Xanthomonas oryzae pv. oryzicola, with a minimum inhibitory concentration
value of 4.0 μg/mL. The in vitro and in vivo assays demonstrated
that 1 had a significant protective effect on P. capsici. Furthermore, 1 inhibited
the spore germination of P. capsici and damaged the plasma membrane structure. As observed by SEM and
TEM, after exposure to 1, mycelia exhibited swelling,
shrunken, branch-increasing phenomena, cell wall and membrane damage,
and disordered content. Transcriptome analysis revealed that 1 might affect starch and sucrose metabolism and fatty acid
biosynthesis by suppressing the expression of genes relevant to cell
wall synthetases and cell membrane-associated genes. These findings
indicate that 1 may be a potential agrochemical fungicide
for controlling phytophthora blight.
A type II polyketide synthase biosynthetic gene cluster (nap) was identified in Streptomyces eurocidicus CGMCC 4.1086 via genome mining. The heterologous expression of the cryptic nap gene cluster in Streptomyces albus J1074 generated dimerized aromatic polyketide naphthocyclinones (1−3), whose structures were determined via extensive analysis using nuclear magnetic resonance and high-resolution electrospray ionization mass spectroscopy. The biological pathway of naphthocyclinone synthesis was revealed via in vivo gene deletion, in vitro biochemical reactions, and comparative genomics. Remarkably, 3 played a crucial role in inhibiting Phytophthora capsici and Phytophthora sojae, with EC 50 values of 6.1 and 20.2 μg/mL, respectively. Furthermore, 3 exhibited a potent protective effect against P. capsici and P. sojae in greenhouse tests.
Barley leaf stripe, caused by Pyrenophora graminea, is an essential systemic seed-borne disease in barley worldwide. Barley is a major cereal crop in the Qinghai–Tibet Plateau, and barley production has been threatened by leaf stripe in this region, particularly in organic farming regions. Detecting the pathogen in infected barley seeds is crucial for managing barley leaf stripe. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed to detect the pathogen based on primers designed based on the sequence of the pig 14 gene (GenBank: AJ277800) of P. graminea. The optimal concentrations of MgSO4, dNTPs, and enzymes in the LAMP reaction system were established as 10.0 mM, 1.0 mM, and 8 U in a 25 μL reaction volume, respectively. The established LAMP methods for detecting P. graminea were optimally performed at 63 °C for 70 min with high reliability. The minimum detection limit was 1 × 10−2 ng·μL−1 in the 25 uL reaction system. The specificity of LAMP for P. graminea was validated with eight fungal species. All DNA extracts from P. graminea-infected barley seeds with incubation, intact, and smashed treatments were applied in LAMP and confirmed to enable the detection of the pathogen. The LAMP assay in this study could facilitate the detection of P. graminea in barley seeds onsite, provide information for seed health certificates, and help decide on seed treatment in leaf stripe management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.