Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa.
BackgroundRecent studies show that near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has the potential to improve the performance of sentinel lymph node (SLN) mapping. The current cohort study was designed to assess the value of the combination of ICG and methylene blue (MB) dye in patients undergoing SLN biopsy.MethodsA prospective self-controlled trial was designed to detect the difference in the detection efficacies of ICG, MB, and combined ICG and MB (ICG + MB) navigation methods. Between 2010 and 2013, 198 consecutive early breast cancer patients eligible for sentinel lymph node biopsy were enrolled and 200 biopsy procedures were performed by injection of both ICG and MB. SLNs were searched and removed under the guidance of fluorescence and/or blue dye. The mapping characteristics, the detection rate of SLNs and positive SLNs, and the number of SLNs of ICG, MB, and ICG + MB were compared. Injection safety of ICG and MB was evaluated.ResultsFluorescence imaging of lymphatic flow, which is helpful to locate the incision site, could be seen in 184 of 200 procedures. The nodal detection rate of ICG, MB, and ICG + MB samples was 97, 89, and 99.5% (χ
2 = 26.2, p < 0.001), respectively, with the combination method yielding a superior identification result. The addition of ICG to the MB method resulted in the identification of more lymph nodes (median 3 versus 2) and more positive axillas (22.7% involved axillas were discovered by fluorescence only) than either method alone. No acute or chronic allergic reaction was observed in this study. However, 23 patients (23/82) who received breast-conserving therapy reported temporary skin staining, and 5 patients had permanent tattooing. Palpable subcutaneous nodules at the injection sites were reported in nine patients. There were no reports of skin necrosis.ConclusionsThe lymphatic navigation by ICG fluorescence detects SLNs at a high detection rate and improves the mapping performance when added to the MB method. The novel ICG + MB dual tracing modality, without involvement of radioactive isotopes, exhibits great potential as an alternative to traditional standard mapping methods.Trial registration
ACTRN12612000109808. Retrospectively registered on 23 January 2012.
Epithelial-to-mesenchymal plasticity (EMP) has been linked to metastasis, stemness, and drug resistance. In prostate cancer, EMP has been associated with both suppression and activation of the androgen receptor (AR) signaling. Here we investigated the effect of the potent AR antagonist enzalutamide on EMP in multiple preclinical models of prostate cancer and patient tissues. Enzalutamide treatment significantly enhanced the expression of EMP drivers (ZEB1, ZEB2, Snail, Twist, and FOXC2) and mesenchymal markers (N-cadherin, fibronectin, and vimentin) in prostate cancer cells, enhanced prostate cancer cell migration, and induced prostate cancer transformation to a spindle, fibroblast-like morphology. Enzalutamide-induced EMP required concomitant suppression of AR signaling and activation of the EMP-promoting transcription factor Snail, as evidenced by both knockdown and overexpression studies. Supporting these findings, AR signaling and Snail expression were inversely correlated in C4-2 xenografts, patient-derived castration-resistant metastases, and clinical samples. For the first time, we elucidate a mechanism explaining the inverse relationship between AR and Snail. Specifically, we found that AR directly repressed gene expression by binding to specific AR-responsive elements within the promoter. Collectively, our findings demonstrate that de-repression of Snail and induction of EMP is an adaptive response to enzalutamide with implications for therapy resistance. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.