Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.
Aims/hypothesis The blood perfusion of individual pancreatic islets is highly variable, with a subgroup of islets having high perfusion and blood vessels responsive to further blood flow increase induced by glucose. This study tested the hypothesis that there is heterogeneity between islets with regard to beta cell proliferation, function and gene expression based on differences in their blood perfusion. Methods Fluorescent microspheres were injected into the ascending aorta, and then microsphere-containing and nonmicrosphere-containing pancreatic islets were isolated for investigation. By this procedure, the 5% of islets with the greatest blood perfusion were identified for study. Islet endothelial cells were isolated separately to investigate the role of improved vascular support in the observed differences. Results The vascular network was found to be more dense and tortuous in microsphere-containing than other islets. The most highly blood-perfused islets also had a higher rate of beta cell proliferation, superior beta cell function and a markedly different gene expression from other islets. Cultured islets exposed to islet endothelial cell products had a similarly increased beta cell proliferation rate, yet significantly fewer changes in gene expression than observed in the most highly blood-perfused islets.Conclusions/interpretation A novel heterogeneity between islets was observed, with superior beta cell proliferation, function and gene expression in a subpopulation of islets identified by high blood perfusion. In contrast with a previously described population of low-oxygenated, sleeping islets, which are recruited into functionality when needed, the presently described heterogeneity is shown to remain in vitro after islet isolation.
We conclude that exposure to NCSCs stimulates human β-cell proliferation, and that these cells improve both the neural and vascular engraftment of transplanted human islets. NCSCs are a promising cellular therapy for translation into clinical use.
Clinical islet transplantation is characterized by a progressive deterioration of islet graft function, which renders many patients once again dependent on exogenous insulin administration within a couple of years. In this study, we aimed to investigate possible engraftment factors limiting the survival and viability of experimentally transplanted human islets beyond the first day after their transplantation to the liver. Human islets were transplanted into the liver of nude mice and characterized 1 or 30 days after transplantation by immunohistochemistry. The factors assessed were endocrine mass, cellular death, hypoxia, vascular density and amyloid formation in the transplanted islets. One day posttransplantation, necrotic cells, as well as apoptotic cells, were commonly observed. In contrast to necrotic death, apoptosis rates remained high 1 month posttransplantation, and the total islet mass was reduced by more than 50% between 1 and 30 days posttransplantation. Islet mass at 30 days posttransplantation correlated negatively to apoptotic death. Vascular density within the transplanted islets remained less than 30% of that in native human islets up to 30 days posttransplantation and was associated with prevailing hypoxia. Amyloid formation was rarely observed in the 1-day-old transplants, but was commonly observed in the 30-day-old islet transplants. We conclude that substantial islet cell death occurs beyond the immediate posttransplantation phase, particularly through apoptotic events. Concomitant low vascularization with prevailing hypoxia and progressive amyloid development was observed in the human islet grafts. Strategies to improve engraftment at the intraportal site or change of implantation site in the clinical setting are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.