BACKGROUND & AIMS microRNAs (miRs) can promote or inhibit tumor growth and are therefore being developed as targets for cancer therapies. They are diverse not only in the mRNAs they target but in their production; the same hairpin RNA structure can generate mature products from each strand, termed 5p and 3p, that can bind different mRNAs. We analyzed the expression, functions, and mechanisms of miR-28-5p and miR-28-3p in colorectal cancer (CRC) cells. METHODS We measured levels of miR-28-5p and miR-28-3p expression in 108 CRC and 49 normal colorectal samples (47 paired) by reverse transcription, quantitative real-time PCR. The roles of miR-28 in CRC development were studied using cultured HCT116, RKO, and SW480 cells and tumor xenograft analyses in immunodeficient mice; their mRNA targets were also investigated. RESULTS miR-28-5p and miR-28-3p were downregulated in CRC samples, compared with normal colon samples. Overexpression of the miRNAs in CRC cells had different effects and the miRNAs interacted with different mRNAs: miR-28-5p altered expression of CCND1 and HOXB3 whereas miR-28-3p bound NM23-H1. Overexpression of miR-28-5p reduced CRC cell proliferation, migration and invasion in vitro, whereas miR-28-3p increased CRC cell migration and invasion in vitro. CRC cells over-expressing miR-28 developed tumors more slowly in mice compared to control cells, but miR-28 promoted tumor metastasis in mice. CONCLUSION miR-28-5p and miR-28-3p are transcribed from the same RNA hairpin and are downregulated in CRC cells. Overexpression of each has different effects on CRC cell proliferation and migration. Such information has a direct application for the design of microRNA gene therapy trials.
BackgroundAnti-CD19 chimeric antigen receptor (CAR) T cells have shown promise in the treatment of B cell acute lymphocytic leukemia (B-ALL). However, its efficacy in B-ALL patients with extramedullary involvement is limited due to poor responses and neurotoxicity. Here, we utilized a third generation of CAR T cell vector, which contains the Toll/interleukin-1 receptor (ITR) domain of Toll-like receptor 2 (TLR2), to generate 1928zT2 T cells targeting CD19, and evaluated the efficacy of 1928zT2 T cells in relapse or refractory B-ALL patients with extramedullary involvement.Methods1928zT2 T cells were generated by 19-28z-TLR2 lentiviral vector transfection into primary human T lymphocytes. The anti-leukemia effect of 1928zT2 T cells were determined by killing assays and in xenografts. Three patients diagnosed as relapse or refractory ALL with extramedullary involvement were infused with 1928zT2 T cells, and the clinical responses were evaluated by BM smear, B-ultrasonography, PET/CT, histology, flow cytometry, qPCR, ELISA, and luminex assay.Results1928zT2 T cells exhibited enhanced effector function against CD19+ leukemic cells in vitro and in a xenograft model of human extramedullary leukemia. Notably, the 1928zT2 T cells eradicated extramedullary leukemia and induced complete remission in the three relapse and refractory ALL patients without serious adverse effects. 1928zT2 T cells expanded robustly in the circulation of these three patients and were detected in the cerebrospinal fluid of patient 3. These three patients experienced cytokine release syndrome (CRS) with grade 2 or 3, which remitted spontaneously or after tocilizumab treatment. None of the three patients suffered neurotoxicity or needed further intensive care.ConclusionsOur results demonstrate that 1928zT2 T cells with TLR2 incorporation augment anti-leukemic effects, particularly for eradicating extramedullary leukemia cells, and suggest that the infusion of 1928zT2 T cells is an encouraging treatment for relapsed/refractory ALL patients with extramedullary involvement.Trial registrationClinicalTrials.gov identifier NCT02822326. Date of registration: July 4, 2016.
Hyperactivation of TGF-β signaling pathway is a common feature of hepatocellular carcinoma (HCC) progression. However, the driver factors leading to enhanced TGF-β activity are not well characterized. Here, we explore the mechanisms that loss of Krüppel-like factor 4 (KLF4) exacerbates oncogenic TGF-β signaling in human HCC. The expression of KLF4 and TGF-β signaling components in primary HCC and their clinicopathologic relevance and significance was evaluated by using tissue microarray and immunohistochemistry. Cellular and molecular impacts of altered KLF4 expression and TGF-β signaling were determined using immunofluorescence, Western blot, reverse-transcriptase polymerase chain reaction, chromatin immunoprecipitation, and promoter reporter assays. Loss of KLF4 expression in primary HCC closely correlated with decreased Smad7 expression, increased p-Smad2/3 expression, and independently predicts reduced overall and relapse-free survival after surgery. TGF-β signaling components were expressed in most HCC cells, and activation of TGF-β signaling promoted cell migration and invasion. Enforced KLF4 expression blocked TGF-β signal transduction and inhibited cell migration and invasion via activation of Smad7 transcription, whereas deletion of its C-terminal zinc-finger domain diminished this effect. KLF4 protein physically interacts with the Smad7 promoter. Promoter deletion and point mutation analyses revealed that a region between nucleotides −15 bp and −9 bp of the Smad7 promoter was required for the induction of Smad7 promoter activity by KLF4. Our data indicate that KLF4 suppresses oncogenic TGF-β signaling by activation of Smad7 transcription, and that loss of KLF4 expression in primary HCC may contribute to activation of oncogenic TGF-β signaling and subsequent tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.