Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.
The X-linked Foxp3 is a member of the forkhead/winged helix transcription factor family. Germline mutations cause lethal autoimmune diseases in males. Serendipitously, we observed that female mice heterozygous for the "scurfin" mutation of the Foxp3 gene (Foxp3(sf/+)) developed cancer at a high rate. The majority of the cancers were mammary carcinomas in which the wild-type Foxp3 allele was inactivated and HER-2/ErbB2 was overexpressed. Foxp3 bound and repressed the HER-2/ErbB2 promoter. Deletion, functionally significant somatic mutations, and downregulation of the FOXP3 gene were commonly found in human breast cancer samples and correlated significantly with HER-2/ErbB2 overexpression, regardless of the status of HER-2 amplification. Our data demonstrate that FOXP3 is an X-linked breast cancer suppressor gene and an important regulator of the HER-2/ErbB2 oncogene.
Despite clear epidemiological and genetic evidence for X-linked prostate cancer risk, all prostate cancer genes identified are autosomal. Here we report somatic inactivating mutations and deletion of the X-linked FOXP3 gene residing at Xp11.23 in human prostate cancer. Lineage-specific ablation of FoxP3 in the mouse prostate epithelial cells leads to prostate hyperplasia and prostate intraepithelial neoplasia. In both normal and malignant prostate tissues, FOXP3 is both necessary and sufficient to transcriptionally repress cMYC, the most commonly over-expressed oncogene in prostate cancer as well as among the aggregates of other cancers. FOXP3 is an X-linked prostate tumor suppressor in the male. Since the male has only one X chromosome, our data represents a paradigm of “single-genetic-hit” inactivation-mediated carcinogenesis.
S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex.Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2. IntroductionCancer pathogenesis involves both the inactivation of tumor suppressor genes and the activation of oncogenes (1, 2). One of the most fascinating aspects of cancer biology is the interaction between cancer suppressor genes and oncogenes. Most of these interactions are at posttranslational levels. For instance, proteins encoded by tumor suppressor genes can inactivate oncogenes. One of the most clearly studied cases is tumor suppressor Rb, which inhibits the E2F family members of oncogenes (1,2). Conversely, oncogenes can overcome the tumor suppressor proteins. For example, S-phase kinase-associated protein 2 (SKP2) causes the degradation of tumor suppressor FOXO (3) as well as CDK inhibitors, such as p27 (4, 5). It is less clear whether such antagonism exists at the transcriptional level. However, a recent study suggests that FOXO may repress the expression of cyclin D (6), a well-known oncogene. Likewise, we have recently demonstrated that forkhead box P3 (FOXP3), an X-linked tumor suppressor, represses transcription of ERBB2/HER2 oncogene (7).The high-level expression of SKP2 was reported in a significant proportion of cancers (5). SKP2 is a component of the E3 ubiquitin ligase SCF with specificity for CDK inhibitor p27. However, under physiological conditions, Skp2 expression is maximal at the S and G2 phases and appears to primarily mediate p27 degradation at the G2 (8, 9) but not G0 and G1 phases (10). As such, Skp2 was found to be essential for progression into mitosis in cell cycles (4, 9, 11). Targeted mutation of Skp2 causes delayed animal growth and cellular polyplo...
Yak domestication represents an important episode in the early human occupation of the high-altitude Qinghai-Tibet Plateau (QTP). The precise timing of domestication is debated and little is known about the underlying genetic changes that occurred during the process. Here we investigate genome variation of wild and domestic yaks. We detect signals of selection in 209 genes of domestic yaks, several of which relate to behaviour and tameness. We date yak domestication to 7,300 years before present (yr BP), most likely by nomadic people, and an estimated sixfold increase in yak population size by 3,600 yr BP. These dates coincide with two early human population expansions on the QTP during the early-Neolithic age and the late-Holocene, respectively. Our findings add to an understanding of yak domestication and its importance in the early human occupation of the QTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.