Long non-coding RNAs (lncRNAs) have been shown to be implicated in the complex network of cancer including malignant melanoma and play important roles in tumorigenesis and progression. However, their functions and downstream mechanisms are largely unknown. This study aimed to investigate whether BRAF-activated non-coding RNA (BANCR), a novel and potential regulator of melanoma cell, participates in the proliferation of malignant melanoma and elucidate the underlying mechanism in this process. We found that BANCR was abnormally overexpressed in human malignant melanoma cell lines and tissues, and increased with tumor stages by quantitative PCR. BANCR knockdown induced by shRNA transfection significantly inhibited proliferation of tumor cells and inactivated MAPK pathway, especially by silencing the ERK1/2 and JNK component. Moreover, combination treatment of BANCR knockdown and suppression ERK1/2 or JNK (induced by specific inhibitors U0126 or SP600125 respectively) produced synergistic inhibitory effects in vitro. And the inhibitory effects induced by ERK1/2 or JNK could be rescued by BANCR overexpression. By tumorigenicity assay in BALB/c nude mice, we further found that BANCR knockdown inhibited tumor growth in vivo. In addition, patients with high expression of BANCR had a lower survival rate. Taken together, we confirmed the abnormal upregulation of a novel lncRNA, BANCR, in human malignant melanoma. BANCR was involved in melanoma cell proliferation both in vitro and in vivo. The linkage between BANCR and MAPK pathway may provide a novel interpretation for the mechanism of proliferation regulation in malignant melanoma.
Trop2 is considered to have an important function in tumor metastasis and the promotion of epithelial‑mesenchymal transition (EMT). E‑cadherin is a crucial factor in intercellular adhesion and EMT transformation. In the present study, we detected the expression of Trop2 and E‑cadherin in breast cancer (BC) to better define their prognostic value. The mRNA expression levels of these two genes in 20 cases of fresh BC tissues were detected by quantitative real‑time polymerase chain reaction (qRT‑PCR). We also detected the expression levels of these two genes by immunohistochemistry (IHC) in 312 BC tissues, and the correlations between the expression of these two genes and the clinicopathological characteristics in BC patients were analyzed. The mRNA and protein expression levels of the two genes in BC cell lines were studied by qRT‑PCR and western blotting. The results indicated that Trop2+/E‑cadherin‑ was expressed in BC tissues more than that in the matched adjacent tissues. The protein expression results obtained via IHC were similar to the mRNA expression results. Trop2+/E‑cadherin‑ that was expressed in BC was associated with lymph node status, metastasis, tumor‑node‑metastasis (TNM) stage, and ER‑/PR‑/HER2‑ expression. BC patients that expressed Trop2+/E‑cadherin‑ had poor overall survival rates. The results of Trop2 and E‑cadherin expression levels obtained in the BC cell lines were the same as those obtained in the BC tissues. Overall, Trop2 has a potential role in the promotion of EMT in BC and it could be considered as a therapeutic target in the future.
Melanoma is the most aggressive type of skin cancer with a rapid progression and a limited efficiency of therapeutics. Recently, studies have identified some microRNAs playing important roles in the development of melanoma. Syndecan-1 (Syn-1), dysregulated in many cancers, plays important roles in tumor progression by controlling cell proliferation. In this study, we investigated whether microRNA-143 (miR-143) is involved in the regulation of Syn-1 and thus plays a functional role in melanoma. We found that miR-143 expression was significantly lower in melanoma tissues than in normal tissues and its low expression was closely related to clinical stages of melanoma. Further experiments showed that consistent with the inhibitory effects induced by knockdown of Syn-1, overexpression of miR-143 suppressed cell proliferation, promoted G1 phase arrest and induced apoptosis in melanoma. Downregulation of miR-143 apparently produced opposite effects. Combined treatment of miR-143 overexpression and Syn-1 knockdown induced remarkable synergistic effects, while reconstitution of miR-143-resistant Syn-1 reversed the inhibitory activity of miR-143. Moreover, miR-143 level was inversely correlated with Syn-1 expression in melanoma cells. miR-143 directly targeted the 3′-untranslated regions of Syn-1 mRNA and they were in the same Argonaute2 complex. Taken together, this study revealed a link between miRNA-143 and Syn-1 in the pathogenesis of melanoma. MiR-143 plays an important role in the regulation of cell growth in melanoma. Restoration of miR-143 expression may represent a promising and efficient therapeutic approach for targeting malignant melanoma.
The cancer testis antigen, melanoma-associated antigen A9 (MAGE-A9), is expressed in many kinds of different human cancers, and is an important target for immunotherapy. However, the clinicopathologic significance of MAGE-A9 in epithelial ovarian cancer (EOC) is unknown. In this study, real-time PCR (12 carcinomas of high FIGO stage, 12 carcinomas of low FIGO stage, and 20 normal ovary or fallopian tube tissues) and immunohistochemistry by tissue microarrays (128 carcinomas and 112 normal ovary or fallopian tube tissues, benign or borderline ovarian tumor tissues) were performed to characterize expression of MAGE-A9 in EOC. We found that significantly higher MAGE-A9 mRNA expression in EOC tumors than that in normal ovary or fallopian tube tissues (all P < 0.05). Protein expression of MAGE-A9 was significantly associated with FIGO stage, high histological grade, level of CA-125 and metastasis. Consistent with the associated poor clinicopathologic features, patients with MAGE-A9H (high-expressing) tumors had a worse overall survival as compared to patients with MAGE-A9L (low or none-expressing) tumors. Further studies revealed that MAGE-A9 overexpression was an independent prognostic factor for overall survival (OS). Multivariate analysis showed that patients with MAGE-A9 overexpressing tumors had extremely poor OS. These findings indicate that MAGE-A9 expression may be helpful in predicting EOC prognosis.
Paclitaxel is commonly used to treat multiple human malignancies, but its mechanism of action is still poorly defined. Human ovarian cancer SKOV3 cells (parental SKOV3) were treated with paclitaxel (1 μM) for 2 days, and the morphologic changes in the cells were monitored for more than 4 months. Parental SKOV3 underwent a markedly morphologic transition from the epithelial to fibroblast-like phenotype following treatment with paclitaxel; the resulting cells were designated as SKOV3-P. The SKOV3-P cells’ proliferative ability was assessed via a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The molecular characteristics of these cells were assessed via immunocytochemical staining and Western blot analysis. Their invasiveness and tumor formation ability was evaluated via wound-scratch and colony formation assays. The tumorigenicity of SKOV3-P cells was assessed in vivo after subcutaneous injection of tumor cells between injections of parental and paclitaxel-treated cells in nude mice. SKOV3-P cells have decreased the proliferation and invasion ability, decreased colony-forming ability when cultured in Matrigel and lost their tumor formation as compared with parental SKOV3 cells when injected in nude mice. SKOV3-P cells have decreased expression of E-cadherin, cytokeratin, Snail, PI3K, and P-Akt-Ser473, and increased expression of fibronectin, vimentin, Slug, P27, and PTEN. These results demonstrated that paclitaxel can inhibit tumor growth by inducing ovarian cancer epithelial cells toward a benign fibroblast-like phenotype through dysregulation of previously known pathways involved in the regulation of epithelial to mesenchymal transition (EMT), which may represent a novel mechanism for paclitaxel-induced tumor suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.