This paper proposes a new test approach that goes beyond cell-aware test, i.e., device-aware test. The approach consists of three steps: defect modeling, fault modeling, and test/DfT development. The defect modeling does not assume that a defect in a device (or a cell) can be modeled electrically as a linear resistor (as the traditional approach suggests), but it rather incorporates the impact of the physical defect on the technology parameters of the device and thereafter on its electrical parameters. Once the defective electrical model is defined, a systematic fault analysis (based on fault simulation) is performed to derive appropriate fault models and subsequently test solutions. The approach is demonstrated using two memory technologies: resistive random access memory (RRAM) and spintransfer torque magnetic random access memory (STT-MRAM). The results show that the proposed approach is able to sensitize faults for defects that are not detected with the traditional approach, meaning that the latter cannot lead to high-quality test solutions as required for a defective part per billion (DPPB) level. The new approach clearly sets up a turning point in testing for at least the considered two emerging memory technologies.
STT-MRAM mass production is around the corner as major foundries worldwide invest heavily on its commercialization. To ensure high-quality STT-MRAM products, effective yet cost-efficient test solutions are of great importance. This paper presents a systematic device-aware defect and fault modeling framework for STT-MRAM to derive accurate fault models which reflect the physical defects appropriately, and thereafter optimal and high-quality test solutions. An overview and classification of manufacturing defects in STT-MRAMs are provided with an emphasis on those related to the fabrication of magnetic tunnel junction (MTJ) devices, i.e., the data-storing elements. Defects in MTJ devices need to be modeled by adjusting the affected technology parameters and subsequent electrical parameters to fully capture the defect impact on both the device's electrical and magnetic properties, whereas defects in interconnects can be modeled as linear resistors. In addition, a complete single-cell fault space and nomenclature are defined, and a systematic fault analysis methodology is proposed. To demonstrate the use of the proposed framework, resistive defects in interconnect and pinhole defects in MTJ devices are analyzed for a single 1T-1MTJ memory cell. Test solutions for detecting these defects are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.