Abstract-Spectrum sharing mechanisms need to be carefully designed to enable inter-technology coexistence in the unlicensed bands, as these bands are an instance of a spectrum commons where highly heterogeneous technologies and deployments must coexist. Unlike in licensed bands, where multiple technologies could coexist only in a primary-secondary DSA mode, a spectrum commons offers competition opportunities between multiple dominant technologies, such as Wi-Fi and the recently proposed LTE in the 5 GHz unlicensed band. In this paper we systematically study the performance of different spectrum sharing schemes for inter-technology coexistence in a spectrum commons. Our contributions are threefold. Firstly, we propose a general framework for transparent comparative analysis of spectrum sharing mechanisms in time and frequency, by studying the effect of key constituent parameters. Secondly, we propose a novel throughput and interference model for inter-technology coexistence, integrating per-device specifics of different distributed MAC sharing mechanisms in a unified network-level perspective. Finally, we present a case study of IEEE 802.11n Wi-Fi and LTE in the 5 GHz unlicensed band, in order to obtain generalizable insight into coexistence in a spectrum commons. Our extensive Monte Carlo simulation results show that LTE/Wi-Fi coexistence in the 5 GHz band can be ensured simply through channel selection schemes, such that time-sharing MAC mechanisms are irrelevant. We also show that, in the general co-channel case, the coexistence performance of MAC sharing mechanisms strongly depends on the interference coupling in the network, predominantly determined by building shielding. We thus identify two regimes: (i) low interference coupling, e.g. residential indoor scenarios, where duty cycle mechanisms outperform sensing-based listen-before-talk (LBT) mechanisms; and (ii) high interference coupling, e.g. open-plan indoor or outdoor hotspot scenarios, where LBT outperforms duty cycle mechanisms.
Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and nontechnical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on intertechnology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions.
Many satellite operators are currently planning to deploy non-geostationary-satellite orbit (NGSO) systems for broadband communication services in the Ku-, Ka-, and V-band, where some of them have already started launching. Consequently, new challenges are expected for inter-system satellite coexistence due to the increase in the interference level and the complexity of the interactions resulting from the heterogeneity of the constellations. This is especially relevant for the Kuband, where the NGSO systems are most diverse and existing geostationary-satellite orbit (GSO) systems, which often support critical services, must be protected from interference. It is thus imperative to evaluate the impact of mutual inter-system interference, the efficiency of the basic interference mitigation techniques, and whether regulatory intervention is needed for these new systems. We conduct an extensive study of intersatellite coexistence in the Ku-band, where we consider all recently proposed NGSO and some selected GSO systems. Our throughput degradation results suggest that existing spectrum regulation may be insufficient to ensure GSO protection from NGSO interference, especially due to the high transmit power of the low Earth orbit (LEO) Kepler satellites. This also results in strong interference towards other NGSO systems, where traditional interference mitigation techniques like look-aside may perform poorly. Specifically, look-aside can be beneficial for large constellations, but detrimental for small constellations. Furthermore, we confirm that band-splitting among satellite operators significantly degrades throughput, also for the Ku-band. Our results overall show that the complexity of the inter-satellite interactions for new NGSO systems is too high to be managed via simple interference mitigation techniques. This means that more sophisticated engineering solutions, and potentially even more strict regulatory requirements, will be needed to ensure coexistence in emerging, dense NGSO deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.