An approximate projection scheme based on the pressure correction method is proposed to solve the Navier–Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and pressure are consistent with the original system. For the spatial discretization a high‐order spectral element method is chosen. The high‐order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme is further validated by simulating the laminar flow over a backward‐facing step.
SUMMARYSeveral explicit Taylor-Galerkin-based time integration schemes are proposed for the solution of both linear and non-linear convection problems with divergence-free velocity. These schemes are based on second-order Taylor series of the time derivative. The spatial discretization is performed by a high-order Galerkin spectral element method. For convection-diffusion problems an operator-splitting technique is given that decouples the treatment of the convective and diffusive terms. Both problems are then solved using a suitable time scheme. The Taylor-Galerkin methods and the operator-splitting scheme are tested numerically for both convection and convection-diffusion problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.