Abstract. We introduce and study a new class of projection methods-namely, the velocitycorrection methods in standard form and in rotational form-for solving the unsteady incompressible Navier-Stokes equations. We show that the rotational form provides improved error estimates in terms of the H 1 -norm for the velocity and of the L 2 -norm for the pressure. We also show that the class of fractional-step methods introduced in [S. A. Orsag, M. Israeli, and M. Deville, J. Sci. Comput., 1 (1986) Phys., 97 (1991), pp. 414-443] can be interpreted as the rotational form of our velocity-correction methods. Thus, to the best of our knowledge, our results provide the first rigorous proof of stability and convergence of the methods in those papers. We also emphasize that, contrary to those of the above groups, our formulations are set in the standard L 2 setting, and consequently they can be easily implemented by means of any variational approximation techniques, in particular the finite element methods.
An approximate projection scheme based on the pressure correction method is proposed to solve the Navier–Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and pressure are consistent with the original system. For the spatial discretization a high‐order spectral element method is chosen. The high‐order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme is further validated by simulating the laminar flow over a backward‐facing step.
The incompressible Stokes equations with prescribed normal stress (open) boundary conditions on part of the boundary are considered. It is shown that the standard pressure-correction method is not suitable for approximating the Stokes equations with open boundary conditions, whereas the rotational pressure-correction method yields reasonably good error estimates. These results appear to be the first ever published for splitting schemes with open boundary conditions. Numerical results in agreement with the error estimates are presented.
This paper introduces a high-order time stepping technique for solving the incompressible Navier-Stokes equations which, unlike coupled techniques, does not require solving a saddle point problem at each time step and, unlike projection methods, does not produce splitting errors and spurious boundary layers. The technique is a generalization of the artificial compressibility method; it is unconditionally stable (for the unsteady Stokes equations), can reach any order in time, and uncouples the velocity and the pressure. The condition number of the linear systems associated with the fully discrete vector-valued problems to be solved at each time step scales like O(τ h −2), where τ is the time step and h is the spatial grid size. No Poisson problem or other second-order elliptic problem has to be solved for the pressure corrections. Unlike projection methods, optimal convergence is observed numerically with Dirichlet and mixed Dirichlet/Neumann boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.