a b s t r a c tThe exposure to heavy charged particles represents a significant risk to the central nervous system. In experiments with rodents, the irradiation with heavy ions induces a prolonged deficit in hippocampus-dependent learning and memory. The exact nature of these violations remains mostly unclear. In this regard, the estimation of radiation effects at the level of single neurons is of our special interest. The present study demonstrates the results of comparative calculations that are performed to clarify the early physical events in single neurons under the exposure to accelerated 12 C and 56 Fe ions with different parameters. Using the Geant4-based Monte Carlo simulations, the radiation effects are considered in terms of energy and dose deposition. The spatial patterns of energy and dose depositions within a single neural cell are produced. As additional characteristics, the spectra of the specific energy and energy imparted are estimated. Our results show that the cell morphology is an important factor determining the accumulation of radiation dose in neurons under the exposure to heavy ions. The data obtained suggest a possibility of radiation damage to synapses that are considered to play an important role in radiationinduced violations of hippocampus-dependent learning and memory.
Abstract. To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions.
A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.