Purpose: Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia.Experimental Design: We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety.Results: Several FDA/European Medicines Agency (EMA)approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC 50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patientderived HNSCCs. Finally, in vivo toxicity studies in Fancadeficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters.Conclusions: Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.
Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell–based hematological malignancies.
Associations between blood cancer and genetic predisposition, including both inherited variants and acquired mutations and epimutations, have been well characterized. However, the majority of these variants affect noncoding regions, making their mechanisms difficult to hypothesize and hindering the translation of these insights into patient benefits. Fueled by unprecedented progress in next-generation sequencing and computational integrative analysis, studies have started applying combinations of epigenetic, genome architecture, and functional assays to bridge the gap between noncoding variants and blood cancer. These complementary tools have not only allowed us to understand the potential malignant role of these variants but also to differentiate key variants, cell-types, and conditions from misleading ones. Here, we briefly review recent studies that have provided fundamental insights into our understanding of how noncoding mutations at enhancers predispose and promote blood malignancies in the context of spatial genome architecture.
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover factors and regulatory networks involved in disease pathogenesis.
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of new disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover novel factors and regulatory networks involved in disease pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.