Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
We evaluated the safety, tolerability, pharmacodynamics, and activity of B-cell depletion with rituximab in patients with relapsing-remitting multiple sclerosis, receiving two courses of rituximab 6 months apart, and followed for a total of 72 weeks. No serious adverse events were noted; events were limited to mild-to-moderate infusion-associated events, which tended to decrease with subsequent infusions. Infections were also mild or moderate, and none led to withdrawal. Fewer new gadolinium-enhancing or T2 lesions were seen starting from week 4 and through week 72. An apparent reduction in relapses was also observed over the 72 weeks compared with the year before therapy.
Mucosal tolerance has been considered a potentially important pathway for the treatment of autoimmune disease, including human multiple sclerosis and experimental conditions such as experimental autoimmune encephalomyelitis (EAE). There is limited information on the capacity of commensal gut bacteria to induce and maintain peripheral immune tolerance. Inbred SJL and C57BL/6 mice were treated orally with a broad spectrum of antibiotics to reduce gut microflora. Reduction of gut commensal bacteria impaired the development of EAE. Intraperitoneal antibiotic-treated mice showed no significant decline in the gut microflora and developed EAE similar to untreated mice, suggesting that reduction in disease activity was related to alterations in the gut bacterial population. Protection was associated with a reduction of proinflammatory cytokines and increases in IL-10 and IL-13. Adoptive transfer of low numbers of IL-10-producing CD25+CD4+ T cells (>75% FoxP3+) purified from cervical lymph nodes of commensal bacteria reduced mice and in vivo neutralization of CD25+ cells suggested the role of regulatory T cells maintaining peripheral immune homeostasis. Our data demonstrate that antibiotic modification of gut commensal bacteria can modulate peripheral immune tolerance that can protect against EAE. This approach may offer a new therapeutic paradigm in the treatment of multiple sclerosis and perhaps other autoimmune conditions.
The intestinal microbiome may have a critical roll in susceptibility or resistance to immune-mediated diseases. Alterations of the gut microflora after oral antibiotic treatment can regulate encephalomyelitis (EAE), an animal model for human multiple sclerosis (MS). We now show that a zwitterionic capsular polysaccharide A (PSA) of Bacteroides fragilis can protect against central nervous system demyelinating disease. Oral administration with purified PSA protected mice against EAE prophylactic and therapeutically. PSA treatment enhanced CD103 expressing dendritic cells (DCs) that accumulated in the cervical lymph nodes. Exposure of naïve DCs to PSA induced the conversion of naïve CD4(+) T cells into interleukin (IL)-10-producing FoxP3(+)Treg cells. Protection against EAE was completely abrogated in IL-10-deficient mice. Our results show an important role for a molecule from human commensal bacteria in protecting against EAE and suggest the possibility for protection in MS.
We report that like other T cells cultured in the presence of transforming growth factor (TGF) β, Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 and TGF-β as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 has functional consequences in Th17-mediated inflammatory disease, we evaluated the role of IL-9 in the development and progression of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells and IL-6–producing macrophages in the central nervous system, as well as mast cell numbers in the regional lymph nodes. Collectively, these data implicate IL-9 as a Th17-derived cytokine that can contribute to inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.