Purpose of Review
This review paper attempts to give a general overview on the BESS applications that demonstrate a high potential in the past few years, identifying most relevant operators — or providers — with the corresponding placement for such. Together with a description of value proposition schemes, observed trends, and research fields, a collection of relevant project references is gathered.
Recent Findings
Many publications and communications try to describe the services that battery energy storage systems can provide to each of the stakeholders, even though they might greatly differ based on national regulatory frameworks. The actual most relevant 6 applications in the view of the authors are described in more detail.
Summary
In this paper, there has been pointed special attention on the BESS opportunities for each operator and their corresponding potential on revenue stacking. Additionally, the most important identified scientific papers for the 6 most important applications in the view of the authors are presented.
Energy storage is one of the key elements within the actual stage of the energy transition, as it is probably one of the most important factors to allow high penetration of fluctuating renewable energies, such as wind or solar, in the existing power systems. Intensive research is being conducted to assess the economic aspects and technical performance of renewable energy-based systems supported by batteries by evaluating different services that batteries can provide to the electric grid or to the end-consumers. In Germany, where the majority of the currently installed 43 GW of PV capacity corresponds to small residential, commercial, or industrial facilities, an interesting market for batteries to enhance local self-consumption and autarky is already booming, with more than 80 000 storage system installations in 2017. In this context, this study presents a comprehensive analysis of the photovoltaic battery model by analyzing the technical and economic consequences that variations on the most relevant system parameters induce. The presented results are based on high resolution data obtained from a representative residential district with an autarky of above 95%. The employed battery model is based on the results obtained through an extensive test campaign and includes electrical and thermal sub-models. The analysis predicts that grid parity of residential PV battery systems can be reached in the upcoming years, with especially great potential of the retrofitting market for those PV installations which run out of the feed-in tariff policy.
The heat generation of a 20Ah lithium iron phosphate pouch battery is characterized in this paper through the conduction of isothermal calorimeter measurements. The influence of temperature and current on battery heat generation is examined by including different operating conditions to the testing matrix, and the influence of the SOC on the battery heat rates is also studied throughout stepped current pulse procedures. Besides, the influence of reversible and irreversible heat contributions is also examined by analyzing the obtained output data. The presented examination was carried out as part of the design process of the battery system for EVs within the context of the JOSPEL project
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.