A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.
Metal-Organic Chemical Vapor Deposition (MOCVD) has been applied to the fabrication of BiFeO3 films undoped and doped with Ba or Ti on SrTiO3 (100) and YSZ (100) substrates. The films have been deposited using a multi-metal source, consisting of the Bi(phenyl)3, Fe(tmhd)3 and Ba(hfa)2 tetraglyme or Ti(tmhd)2(O-iPr)2 (phenyl = -C6H5, H-tmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = iso-propoxide; H-hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = CH3O(CH2CH2O)4CH3) precursor mixture. The structural and morphological characterization of films has been carried out using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chemical compositional studies have been performed by energy dispersive X-ray (EDX) analysis. Structural and morphological characterizations point to the formation of homogeneous and flat surfaces for both undoped and doped BiFeO3 films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.