The filtering equations govern the evolution of the conditional distribution of a signal process given partial, and possibly noisy, observations arriving sequentially in time. Their numerical approximation plays a central role in many real-life applications, including numerical weather prediction [Llopis et al. (SIAM J Sci Comput 40(3):A1544–A1565, 2018), Galanis et al. (Geophysicae 24(10): 2451–2460, 2006)], finance [Brigo and Hanzon (Insurance Math Econom 22(1):53–64, 1998), Date and Ponomareva (IMA J Manag Math 22(3): 195–211, 2011), Crisan and Rozovskii (The Oxford handbook of nonlinear filtering, 2011)] and engineering [Myötyri et al. (Reliability Eng Syst Saf 91(2):200–208, 2005)]. One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method, initiated by Gyongy, Krylov, LeGland, among other contributors, see e.g., Gyöngy and Krylov (Stochastic inequalities and applications, Progr. Probab. 56:301–321, 2003), Le Gland(Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lect. Notes Control Inf. Sci. 176:177–187, 1992). This method, and other PDE based approaches, have particular applicability for solving low-dimensional problems. In this work we combine this method with a neural network representation inspired by [Han et al. (Proc Natl acad Sci 115(34):8505–8510, 2018)]. The new methodology is used to produce an approximation of the unnormalised conditional distribution of the signal process. We further develop a recursive normalisation procedure to recover the normalised conditional distribution of the signal process. The new scheme can be iterated over multiple time steps whilst keeping its asymptotic unbiasedness property intact. We test the neural network approximations with numerical approximation results for the Kalman and Benes filter.
The filtering equations govern the evolution of the conditional distribution of a signal process given partial, and possibly noisy, observations arriving sequentially in time. Their numerical approximation plays a central role in many real-life applications, including numerical weather prediction [13,33], finance [7, 10][9, Part IX] and engineering [35]. One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method, initiated by Gyongy, Krylov, LeGland, among other contributors, see e.g., [17,31]. This method, and other PDE based approaches, have particular applicability for solving low-dimensional problems. In this work we combine this method with a neural network representation inspired by [21]. The new methodology is used to produce an approximation of the unnormalised conditional distribution of the signal process. We further develop a recursive normalisation procedure to recover the normalised conditional distribution of the signal process. The new scheme can be iterated over multiple time steps whilst keeping its asymptotic unbiasedness property intact. We test the neural network approximations with numerical approximation results for the Kalman and Benes filter.
We consider high order approximations of the solution of the stochastic filtering problem, derive their pathwise representation in the spirit of the earlier work of Clark [2] and Davis [10,11] and prove their robustness property. In particular, we show that the high order discretised filtering functionals can be represented by Lipschitz continuous functions defined on the observation path space. This property is important from the practical point of view as it is in fact the pathwise version of the filtering functional that is sought in numerical applications. Moreover, the pathwise viewpoint will be a stepping stone into the rigorous development of machine learning methods for the filtering problem. This work is a continuation of [5] where a discretisation of the solution of the filtering problem of arbitrary order has been established. We expand the work in [5] by showing that robust approximations can be derived from the discretisations therein.
The Benes filter is a well-known continuous-time stochastic filtering model in one dimension that has the advantage of being explicitly solvable. From an evolution equation point of view, the Benes filter is also the solution of the filtering equations given a particular set of coefficient functions. In general, the filtering stochastic partial differential equations (SPDE) arise as the evolution equations for the conditional distribution of an underlying signal given partial, and possibly noisy, observations. Their numerical approximation presents a central issue for theoreticians and practitioners alike, who are actively seeking accurate and fast methods, especially for such high-dimensional settings as numerical weather prediction, for example. In this paper we present a brief study of a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model achieved by deep learning. Based on the classical SPDE splitting method, our algorithm includes a recursive normalisation procedure to recover the normalised conditional distribution of the signal process. Within the analytically tractable setting of the Benes filter, we discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network. Further we present the first study of the neural network method with an adaptive domain for the Benes model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.