Here, we present atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance (FTICR) mass analysis of a volcanic asphalt sample by acquiring data for 20 Da wide mass segments across a 1000 Da range, stitched into a single composite mass spectrum, and compare to a broad-band mass spectrum for the same sample. The segmented spectrum contained 170 000 peaks with magnitude greater than 6σ of the root-mean-square (rms) baseline noise, for which 126 264 unique elemental compositions could be assigned. Approximately two-thirds of those compositions represent monoisotopic (i.e., chemically different) species. That complexity is higher than that for any previously reported mass spectrum and almost 3 times greater than that obtained from the corresponding broad-band spectrum (59 015). For the segmented mass spectrum, the signal-to-noise ratio (S/N) was significantly higher throughout the spectrum, but especially at the lower and upper ends of mass distribution relative to that of the near-Gaussian broad-band mass distribution. Despite this S/N improvement, mass measurement accuracy was noticeably improved only at lower masses. The increased S/N did, however, yield a higher number of peaks and higher dynamic range throughout the entire segmented spectrum relative to the conventional broad-band spectrum. The additional assigned peaks include higher heteroatom species, as well as additional radicals and isotopologues. Segmenting can require a significant investment in data acquisition and analysis time over broad-band spectroscopy (∼1775% in this case) making it best suited for targeted analysis and/or when complete compositional coverage is important. Finally, the present segmented spectrum contains, to our knowledge, more assigned peaks than any spectrum of any kind (e.g., UV-vis, infrared, microwave, magnetic resonance, etc.).
Coal tar and its distilled products (e.g., creosote) are commonly applied wood preservatives and asphalt sealants that have been identified as significant sources of polycyclic aromatic hydrocarbons (PAHs) to the environment. Despite predictions that coal tar is composed of hundreds of compounds, few studies have ventured beyond measuring select PAHs with gas chromatography–mass spectrometry (GC-MS). Expanding the target analyte list will improve our capacity to gauge the inputs and impacts of organic compounds released from coal tar and its products into the environment. Employing a complementary approach with comprehensive two-dimensional gas chromatography (GC × GC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we analyzed residues suspected to be coal tar or creosote collected from beaches along coastal Texas in 2014. Over 3000 peaks were observed by GC × GC (compared to the 250 peaks found by our GC-MS analysis) in the whole extract of the samples. To remove PAHs and focus on less abundant compounds, we used silica-gel chromatography to isolate eight fractions. Analysis of each silica-gel fraction by GC × GC led to the tentative identification of over 6600 peaks, including numerous nitrogen-containing heterocycles. Focusing on compounds not amenable to gas chromatography, atmospheric pressure photoionization (APPI) FT-ICR MS revealed 14 000 mass spectral peaks between 150 and 900 Da, mainly aromatics and heterocycles with up to two nitrogen or three oxygen atoms per molecule. On the basis of a comparison of the FT-ICR MS data to the Boduszynski continuum, we confirmed that these samples were residues of a whole coal tar and not a distillate cut point such as creosote.
Corrosion control at refineries remains a challenge because the mechanism of naphthenic acid (NAP) corrosion is still not fully understood. The rate of NAP corrosion does not correlate with acidity (as measured by total acid number); therefore, it has been suggested that a subset of NAP in petroleum fractions may be more corrosive than others. Because the primary corrosion product (iron naphthenates) may thermally decompose to ketones at corrosion temperatures (250–400 °C), ketones in corrosion fluids could potentially be used to implicate specific problematic acids in corrosion tests. To that end, we have developed a method for isolating and characterizing ketones in corrosion test solutions. Ketones from tests on palmitic and 4-cyclohexyl pentanoic acids (C16H32O2 and C11H20O2) have been successfully isolated with a strong anion exchange solid-phase separation. Gas chromatography/mass spectrometry identifies ketones formed as a result of model acid corrosion. Fourier transform ion cyclotron resonance mass spectrometry further confirms the detection of these ketones and structurally confirms ketones by use of a commercially available reagent that targets ketones and aldehydes. Additional oxygen species generated in the corrosion test likely result from reactions between dissolved atmospheric oxygen and the mineral oil matrix. With this method now validated, it can be applied in future studies of more complex acid mixtures to determine any structural specificity in naphthenic acid corrosion.
As levels of natural organic matter (NOM) in surface water rise, the minimization of potentially harmful disinfection by-products (DBPs) becomes increasingly critical. Here, we introduce the advantage that chromatographic prefractionation brings to investigating compositional changes to NOM caused by chlorination. Fractionation reduces complexity, making it easier to observe changes and attribute them to specific components. Under the conditions tested (0.1-0.4 g of Cl to g of C without further additives), the differences between highly and less oxidized NOM were striking. Highly oxidized NOM formed more diverse Cl-containing DPB, had a higher propensity to react with multiple Cl, and tended to transform so drastically as to no longer be amenable to electrospray-ionization mass spectral detection. Less-oxidized material tended to incorporate one Cl and retain its humiclike composition. N-containing, lipidlike, and condensed aromatic structure (CAS)-like NOM were selectively enriched in mass spectra, suggesting that such components do not react as extensively with NaOCl as their counterparts. Carbohydrate-like NOM, conversely, was selectively removed from spectra by chlorination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.